must implement.
A writer can be implemented to exercise various degrees of care in checking
for conflicts and in avoiding them.
(A conflict occurs when a value in the data source has been changed after
the rowset populated itself with that value.)
The RIOptimisticProvider implementation assumes there will be
few or no conflicts and therefore sets no locks. It updates the data source
with values from the CachedRowSet object only if there are no
conflicts.
Other writers can be implemented so that they always write modified data to
the data source, which can be accomplished either by not checking for conflicts
or, on the other end of the spectrum, by setting locks sufficient to prevent data
in the data source from being changed. Still other writer implementations can be
somewhere in between.
Setting the SyncProvider using the CachedRowSet
method setSyncProvider
The following line of code resets the SyncProvider object
for crs, the CachedRowSet object created with the
default constructor.
crs.setSyncProvider("com.fred.providers.HighAvailabilityProvider");
SyncFactory and SyncProvider for
more details.
2.0 Retrieving Data from a CachedRowSet Object
Data is retrieved from a CachedRowSet object by using the
getter methods inherited from the ResultSet
interface. The following examples, in which crs is a
CachedRowSet
object, demonstrate how to iterate through the rows, retrieving the column
values in each row. The first example uses the version of the
getter methods that take a column number; the second example
uses the version that takes a column name. Column numbers are generally
used when the RowSet object's command
is of the form SELECT * FROM TABLENAME; column names are most
commonly used when the command specifies columns by name.
while (crs.next()) {
String name = crs.getString(1);
int id = crs.getInt(2);
Clob comment = crs.getClob(3);
short dept = crs.getShort(4);
System.out.println(name + " " + id + " " + comment + " " + dept);
}
while (crs.next()) {
String name = crs.getString("NAME");
int id = crs.getInt("ID");
Clob comment = crs.getClob("COM");
short dept = crs.getShort("DEPT");
System.out.println(name + " " + id + " " + comment + " " + dept);
}
2.1 Retrieving RowSetMetaData
An application can get information about the columns in a CachedRowSet
object by calling ResultSetMetaData and RowSetMetaData
methods on a RowSetMetaData object. The following code fragment,
in which crs is a CachedRowSet object, illustrates the process.
The first line creates a RowSetMetaData object with information
about the columns in crs. The method getMetaData,
inherited from the ResultSet interface, returns a
ResultSetMetaData object, which is cast to a
RowSetMetaData object before being assigned to the variable
rsmd. The second line finds out how many columns jrs has, and
the third line gets the JDBC type of values stored in the second column of
jrs.
RowSetMetaData rsmd = (RowSetMetaData)crs.getMetaData();
int count = rsmd.getColumnCount();
int type = rsmd.getColumnType(2);
The RowSetMetaData interface differs from the
ResultSetMetaData interface in two ways.
- It includes
setter methods: A RowSet
object uses these methods internally when it is populated with data from a
different ResultSet object.
- It contains fewer
getter methods: Some
ResultSetMetaData methods to not apply to a RowSet
object. For example, methods retrieving whether a column value is writable
or read only do not apply because all of a RowSet object's
columns will be writable or read only, depending on whether the rowset is
updatable or not.
NOTE: In order to return a RowSetMetaData object, implementations must
override the getMetaData() method defined in
java.sql.ResultSet and return a RowSetMetaData object.
3.0 Updating a CachedRowSet Object
Updating a CachedRowSet object is similar to updating a
ResultSet object, but because the rowset is not connected to
its data source while it is being updated, it must take an additional step
to effect changes in its underlying data source. After calling the method
updateRow or insertRow, a
CachedRowSet
object must also call the method acceptChanges to have updates
written to the data source. The following example, in which the cursor is
on a row in the CachedRowSet object crs, shows
the code required to update two column values in the current row and also
update the RowSet object's underlying data source.
crs.updateShort(3, 58);
crs.updateInt(4, 150000);
crs.updateRow();
crs.acceptChanges();
The next example demonstrates moving to the insert row, building a new
row on the insert row, inserting it into the rowset, and then calling the
method acceptChanges to add the new row to the underlying data
source. Note that as with the getter methods, the updater methods may take
either a column index or a column name to designate the column being acted upon.
crs.moveToInsertRow();
crs.updateString("Name", "Shakespeare");
crs.updateInt("ID", 10098347);
crs.updateShort("Age", 58);
crs.updateInt("Sal", 150000);
crs.insertRow();
crs.moveToCurrentRow();
crs.acceptChanges();
NOTE: Where the insertRow() method inserts the contents of a
CachedRowSet object's insert row is implementation-defined.
The reference implementation for the CachedRowSet interface
inserts a new row immediately following the current row, but it could be
implemented to insert new rows in any number of other places.
Another thing to note about these examples is how they use the method
acceptChanges. It is this method that propagates changes in
a CachedRowSet object back to the underlying data source,
calling on the RowSet object's writer internally to write
changes to the data source. To do this, the writer has to incur the expense
of establishing a connection with that data source. The
preceding two code fragments call the method acceptChanges
immediately after calling updateRow or insertRow.
However, when there are multiple rows being changed, it is more efficient to call
acceptChanges after all calls to updateRow
and insertRow have been made. If acceptChanges
is called only once, only one connection needs to be established.
4.0 Updating the Underlying Data Source
When the method acceptChanges is executed, the
CachedRowSet object's writer, a RowSetWriterImpl
object, is called behind the scenes to write the changes made to the
rowset to the underlying data source. The writer is implemented to make a
connection to the data source and write updates to it.
A writer is made available through an implementation of the
SyncProvider interface, as discussed in section 1,
"Creating a CachedRowSet Object."
The default reference implementation provider, RIOptimisticProvider,
has its writer implemented to use an optimistic concurrency control
mechanism. That is, it maintains no locks in the underlying database while
the rowset is disconnected from the database and simply checks to see if there
are any conflicts before writing data to the data source. If there are any
conflicts, it does not write anything to the data source.
The reader/writer facility
provided by the SyncProvider class is pluggable, allowing for the
customization of data retrieval and updating. If a different concurrency
control mechanism is desired, a different implementation of
SyncProvider can be plugged in using the method
setSyncProvider.
In order to use the optimistic concurrency control routine, the
RIOptismisticProvider maintains both its current
value and its original value (the value it had immediately preceding the
current value). Note that if no changes have been made to the data in a
RowSet object, its current values and its original values are the same,
both being the values with which the RowSet object was initially
populated. However, once any values in the RowSet object have been
changed, the current values and the original values will be different, though at
this stage, the original values are still the initial values. With any subsequent
changes to data in a RowSet object, its original values and current
values will still differ, but its original values will be the values that
were previously the current values.
Keeping track of original values allows the writer to compare the RowSet
object's original value with the value in the database. If the values in
the database differ from the RowSet object's original values, which means that
the values in the database have been changed, there is a conflict.
Whether a writer checks for conflicts, what degree of checking it does, and how
it handles conflicts all depend on how it is implemented.
5.0 Registering and Notifying Listeners
Being JavaBeans components, all rowsets participate in the JavaBeans event
model, inheriting methods for registering listeners and notifying them of
changes from the BaseRowSet class. A listener for a
CachedRowSet object is a component that wants to be notified
whenever there is a change in the rowset. For example, if a
CachedRowSet object contains the results of a query and
those
results are being displayed in, say, a table and a bar graph, the table and
bar graph could be registered as listeners with the rowset so that they can
update themselves to reflect changes. To become listeners, the table and
bar graph classes must implement the RowSetListener interface.
Then they can be added to the CachedRowSet object's list of
listeners, as is illustrated in the following lines of code.
crs.addRowSetListener(table);
crs.addRowSetListener(barGraph);
Each CachedRowSet method that moves the cursor or changes
data also notifies registered listeners of the changes, so
table and barGraph will be notified when there is
a change in crs.
6.0 Passing Data to Thin Clients
One of the main reasons to use a CachedRowSet object is to
pass data between different components of an application. Because it is
serializable, a CachedRowSet object can be used, for example,
to send the result of a query executed by an enterprise JavaBeans component
running in a server environment over a network to a client running in a
web browser.
While a CachedRowSet object is disconnected, it can be much
leaner than a ResultSet object with the same data.
As a result, it can be especially suitable for sending data to a thin client
such as a PDA, where it would be inappropriate to use a JDBC driver
due to resource limitations or security considerations.
Thus, a CachedRowSet object provides a means to "get rows in"
without the need to implement the full JDBC API.
7.0 Scrolling and Updating
A second major use for CachedRowSet objects is to provide
scrolling and updating for ResultSet objects that
do not provide these capabilities themselves. In other words, a
CachedRowSet object can be used to augment the
capabilities of a JDBC technology-enabled driver (hereafter called a
"JDBC driver") when the DBMS does not provide full support for scrolling and
updating. To achieve the effect of making a non-scrollble and read-only
ResultSet object scrollable and updatable, a programmer
simply needs to create a CachedRowSet object populated
with that ResultSet object's data. This is demonstrated
in the following code fragment, where stmt is a
Statement object.
ResultSet rs = stmt.executeQuery("SELECT * FROM EMPLOYEES");
CachedRowSetImpl crs = new CachedRowSetImpl();
crs.populate(rs);
The object crs now contains the data from the table
EMPLOYEES, just as the object rs does.
The difference is that the cursor for crs can be moved
forward, backward, or to a particular row even if the cursor for
rs can move only forward. In addition, crs is
updatable even if rs is not because by default, a
CachedRowSet object is both scrollable and updatable.
In summary, a CachedRowSet object can be thought of as simply
a disconnected set of rows that are being cached outside of a data source.
Being thin and serializable, it can easily be sent across a wire,
and it is well suited to sending data to a thin client. However, a
CachedRowSet object does have a limitation: It is limited in
size by the amount of data it can store in memory at one time.
8.0 Getting Universal Data Access
Another advantage of the CachedRowSet class is that it makes it
possible to retrieve and store data from sources other than a relational
database. The reader for a rowset can be implemented to read and populate
its rowset with data from any tabular data source, including a spreadsheet
or flat file.
Because both a CachedRowSet object and its metadata can be
created from scratch, a component that acts as a factory for rowsets
can use this capability to create a rowset containing data from
non-SQL data sources. Nevertheless, it is expected that most of the time,
CachedRowSet objects will contain data that was fetched
from an SQL database using the JDBC API.
9.0 Setting Properties
All rowsets maintain a set of properties, which will usually be set using
a tool. The number and kinds of properties a rowset has will vary,
depending on what the rowset does and how it gets its data. For example,
rowsets that get their data from a ResultSet object need to
set the properties that are required for making a database connection.
If a rowset uses the DriverManager facility to make a
connection, it needs to set a property for the JDBC URL that identifies
the appropriate driver, and it needs to set the properties that give the
user name and password.
If, on the other hand, the rowset uses a DataSource object
to make the connection, which is the preferred method, it does not need to
set the property for the JDBC URL. Instead, it needs to set
properties for the logical name of the data source, for the user name,
and for the password.
NOTE: In order to use a DataSource object for making a
connection, the DataSource object must have been registered
with a naming service that uses the Java Naming and Directory
InterfaceTM (JNDI) API. This registration
is usually done by a person acting in the capacity of a system
administrator.
In order to be able to populate itself with data from a database, a rowset
needs to set a command property. This property is a query that is a
PreparedStatement object, which allows the query to have
parameter placeholders that are set at run time, as opposed to design time.
To set these placeholder parameters with values, a rowset provides
setter methods for setting values of each data type,
similar to the setter methods provided by the PreparedStatement
interface.
The following code fragment illustrates how the CachedRowSet
object crs might have its command property set. Note that if a
tool is used to set properties, this is the code that the tool would use.
crs.setCommand("SELECT FIRST_NAME, LAST_NAME, ADDRESS FROM CUSTOMERS " +
"WHERE CREDIT_LIMIT > ? AND REGION = ?");
The values that will be used to set the command's placeholder parameters are
contained in the RowSet object's params field, which is a
Vector object.
The CachedRowSet class provides a set of setter
methods for setting the elements in its params field. The
following code fragment demonstrates setting the two parameters in the
query from the previous example.
crs.setInt(1, 5000);
crs.setString(2, "West");
The params field now contains two elements, each of which is
an array two elements long. The first element is the parameter number;
the second is the value to be set.
In this case, the first element of params is
1, 5000, and the second element is 2,
"West". When an application calls the method
execute, it will in turn call on this RowSet object's reader,
which will in turn invoke its readData method. As part of
its implementation, readData will get the values in
params and use them to set the command's placeholder
parameters.
The following code fragment gives an idea of how the reader
does this, after obtaining the Connection object
con.
PreparedStatement pstmt = con.prepareStatement(crs.getCommand());
reader.decodeParams();
// decodeParams figures out which setter methods to use and does something
// like the following:
// for (i = 0; i < params.length; i++) {
// pstmt.setObject(i + 1, params[i]);
// }
At this point, the command for crs is the query "SELECT
FIRST_NAME, LAST_NAME, ADDRESS FROM CUSTOMERS WHERE CREDIT_LIMIT > 5000
AND REGION = "West". After the readData method executes
this command with the following line of code, it will have the data from
rs with which to populate crs.
ResultSet rs = pstmt.executeQuery();
The preceding code fragments give an idea of what goes on behind the
scenes; they would not appear in an application, which would not invoke
methods like readData and decodeParams.
In contrast, the following code fragment shows what an application might do.
It sets the rowset's command, sets the command's parameters, and executes
the command. Simply by calling the execute method,
crs populates itself with the requested data from the
table CUSTOMERS.
crs.setCommand("SELECT FIRST_NAME, LAST_NAME, ADDRESS FROM CUSTOMERS" +
"WHERE CREDIT_LIMIT > ? AND REGION = ?");
crs.setInt(1, 5000);
crs.setString(2, "West");
crs.execute();
10.0 Paging Data
Because a CachedRowSet object stores data in memory,
the amount of data that it can contain at any one
time is determined by the amount of memory available. To get around this limitation,
a CachedRowSet object can retrieve data from a ResultSet
object in chunks of data, called pages. To take advantage of this mechanism,
an application sets the number of rows to be included in a page using the method
setPageSize. In other words, if the page size is set to five, a chunk
of five rows of
data will be fetched from the data source at one time. An application can also
optionally set the maximum number of rows that may be fetched at one time. If the
maximum number of rows is set to zero, or no maximum number of rows is set, there is
no limit to the number of rows that may be fetched at a time.
After properties have been set,
the CachedRowSet object must be populated with data
using either the method populate or the method execute.
The following lines of code demonstrate using the method populate.
Note that this version of the method takes two parameters, a ResultSet
handle and the row in the ResultSet object from which to start
retrieving rows.
CachedRowSet crs = new CachedRowSetImpl();
crs.setMaxRows(20);
crs.setPageSize(4);
crs.populate(rsHandle, 10);
When this code runs, crs will be populated with four rows from
rsHandle starting with the tenth row.
The next code fragment shows populating a CachedRowSet object using the
method execute, which may or may not take a Connection
object as a parameter. This code passes execute the Connection
object conHandle.
Note that there are two differences between the following code
fragment and the previous one. First, the method setMaxRows is not
called, so there is no limit set for the number of rows that crs may contain.
(Remember that crs always has the overriding limit of how much data it can
store in memory.) The second difference is that the you cannot pass the method
execute the number of the row in the ResultSet object
from which to start retrieving rows. This method always starts with the first row.
CachedRowSet crs = new CachedRowSetImpl();
crs.setPageSize(5);
crs.execute(conHandle);
After this code has run, crs will contain five rows of data from the
ResultSet object produced by the command for crs. The writer
for crs will use conHandle to connect to the data source and
execute the command for crs. An application is then able to operate on the
data in crs in the same way that it would operate on data in any other
CachedRowSet object.
To access the next page (chunk of data), an application calls the method
nextPage. This method creates a new CachedRowSet object
and fills it with the next page of data. For example, assume that the
CachedRowSet object's command returns a ResultSet object
rs with 1000 rows of data. If the page size has been set to 100, the first
call to the method nextPage will create a CachedRowSet object
containing the first 100 rows of rs. After doing what it needs to do with the
data in these first 100 rows, the application can again call the method
nextPage to create another CachedRowSet object
with the second 100 rows from rs. The data from the first CachedRowSet
object will no longer be in memory because it is replaced with the data from the
second CachedRowSet object. After the tenth call to the method nextPage,
the tenth CachedRowSet object will contain the last 100 rows of data from
rs, which are stored in memory. At any given time, the data from only one
CachedRowSet object is stored in memory.
The method nextPage returns true as long as the current
page is not the last page of rows and false when there are no more pages.
It can therefore be used in a while loop to retrieve all of the pages,
as is demonstrated in the following lines of code.
CachedRowSet crs = CachedRowSetImpl();
crs.setPageSize(100);
crs.execute(conHandle);
while(crs.nextPage()) {
while(crs.next()) {
. . . // operate on chunks (of 100 rows each) in crs,
// row by row
}
}
After this code fragment has been run, the application will have traversed all
1000 rows, but it will have had no more than 100 rows in memory at a time.
The CachedRowSet interface also defines the method previousPage.
Just as the method nextPage is analogous to the ResultSet
method next, the method previousPage is analogous to
the ResultSet method previous. Similar to the method
nextPage, previousPage creates a CachedRowSet
object containing the number of rows set as the page size. So, for instance, the
method previousPage could be used in a while loop at
the end of the preceding code fragment to navigate back through the pages from the last
page to the first page.
The method previousPage is also similar to nextPage
in that it can be used in a while
loop, except that it returns true as long as there is another page
preceding it and false when there are no more pages ahead of it.
By positioning the cursor after the last row for each page,
as is done in the following code fragment, the method previous
navigates from the last row to the first row in each page.
The code could also have left the cursor before the first row on each page and then
used the method next in a while loop to navigate each page
from the first row to the last row.
The following code fragment assumes a continuation from the previous code fragment,
meaning that the cursor for the tenth CachedRowSet object is on the
last row. The code moves the cursor to after the last row so that the first
call to the method previous will put the cursor back on the last row.
After going through all of the rows in the last page (the CachedRowSet
object crs), the code then enters
the while loop to get to the ninth page, go through the rows backwards,
go to the eighth page, go through the rows backwards, and so on to the first row
of the first page.
crs.afterLast();
while(crs.previous()) {
. . . // navigate through the rows, last to first
{
while(crs.previousPage()) {
crs.afterLast();
while(crs.previous()) {
. . . // go from the last row to the first row of each page
}
}