API Overview API Index Package Overview Direct link to this page
JDK 1.6
  java.util.regex. Pattern View Javadoc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245

/*
 * @(#)Pattern.java	1.124 07/03/15
 *
 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
 * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
 */

package java.util.regex;

import java.security.AccessController;
import java.security.PrivilegedAction;
import java.text.CharacterIterator;
import java.text.Normalizer;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.Arrays;


/**
 * A compiled representation of a regular expression.
 *
 * <p> A regular expression, specified as a string, must first be compiled into
 * an instance of this class.  The resulting pattern can then be used to create
 * a {@link Matcher} object that can match arbitrary {@link
 * java.lang.CharSequence </code>character sequences<code>} against the regular
 * expression.  All of the state involved in performing a match resides in the
 * matcher, so many matchers can share the same pattern.
 *
 * <p> A typical invocation sequence is thus
 *
 * <blockquote><pre>
 * Pattern p = Pattern.{@link #compile compile}("a*b");
 * Matcher m = p.{@link #matcher matcher}("aaaaab");
 * boolean b = m.{@link Matcher#matches matches}();</pre></blockquote>
 *
 * <p> A {@link #matches matches} method is defined by this class as a
 * convenience for when a regular expression is used just once.  This method
 * compiles an expression and matches an input sequence against it in a single
 * invocation.  The statement
 *
 * <blockquote><pre>
 * boolean b = Pattern.matches("a*b", "aaaaab");</pre></blockquote>
 *
 * is equivalent to the three statements above, though for repeated matches it
 * is less efficient since it does not allow the compiled pattern to be reused.
 *
 * <p> Instances of this class are immutable and are safe for use by multiple
 * concurrent threads.  Instances of the {@link Matcher} class are not safe for
 * such use.
 *
 *
 * <a name="sum">
 * <h4> Summary of regular-expression constructs </h4>
 *
 * <table border="0" cellpadding="1" cellspacing="0"
 *  summary="Regular expression constructs, and what they match">
 *
 * <tr align="left">
 * <th bgcolor="#CCCCFF" align="left" id="construct">Construct</th>
 * <th bgcolor="#CCCCFF" align="left" id="matches">Matches</th>
 * </tr>
 *
 * <tr><th>&nbsp;</th></tr>
 * <tr align="left"><th colspan="2" id="characters">Characters</th></tr>
 *
 * <tr><td valign="top" headers="construct characters"><i>x</i></td>
 *     <td headers="matches">The character <i>x</i></td></tr>
 * <tr><td valign="top" headers="construct characters"><tt>\\</tt></td>
 *     <td headers="matches">The backslash character</td></tr>
 * <tr><td valign="top" headers="construct characters"><tt>\0</tt><i>n</i></td>
 *     <td headers="matches">The character with octal value <tt>0</tt><i>n</i>
 *         (0&nbsp;<tt>&lt;=</tt>&nbsp;<i>n</i>&nbsp;<tt>&lt;=</tt>&nbsp;7)</td></tr>
 * <tr><td valign="top" headers="construct characters"><tt>\0</tt><i>nn</i></td>
 *     <td headers="matches">The character with octal value <tt>0</tt><i>nn</i>
 *         (0&nbsp;<tt>&lt;=</tt>&nbsp;<i>n</i>&nbsp;<tt>&lt;=</tt>&nbsp;7)</td></tr>
 * <tr><td valign="top" headers="construct characters"><tt>\0</tt><i>mnn</i></td>
 *     <td headers="matches">The character with octal value <tt>0</tt><i>mnn</i>
 *         (0&nbsp;<tt>&lt;=</tt>&nbsp;<i>m</i>&nbsp;<tt>&lt;=</tt>&nbsp;3,
 *         0&nbsp;<tt>&lt;=</tt>&nbsp;<i>n</i>&nbsp;<tt>&lt;=</tt>&nbsp;7)</td></tr>
 * <tr><td valign="top" headers="construct characters"><tt>\x</tt><i>hh</i></td>
 *     <td headers="matches">The character with hexadecimal&nbsp;value&nbsp;<tt>0x</tt><i>hh</i></td></tr>
 * <tr><td valign="top" headers="construct characters"><tt>&#92;u</tt><i>hhhh</i></td>
 *     <td headers="matches">The character with hexadecimal&nbsp;value&nbsp;<tt>0x</tt><i>hhhh</i></td></tr>
 * <tr><td valign="top" headers="matches"><tt>\t</tt></td>
 *     <td headers="matches">The tab character (<tt>'&#92;u0009'</tt>)</td></tr>
 * <tr><td valign="top" headers="construct characters"><tt>\n</tt></td>
 *     <td headers="matches">The newline (line feed) character (<tt>'&#92;u000A'</tt>)</td></tr>
 * <tr><td valign="top" headers="construct characters"><tt>\r</tt></td>
 *     <td headers="matches">The carriage-return character (<tt>'&#92;u000D'</tt>)</td></tr>
 * <tr><td valign="top" headers="construct characters"><tt>\f</tt></td>
 *     <td headers="matches">The form-feed character (<tt>'&#92;u000C'</tt>)</td></tr>
 * <tr><td valign="top" headers="construct characters"><tt>\a</tt></td>
 *     <td headers="matches">The alert (bell) character (<tt>'&#92;u0007'</tt>)</td></tr>
 * <tr><td valign="top" headers="construct characters"><tt>\e</tt></td>
 *     <td headers="matches">The escape character (<tt>'&#92;u001B'</tt>)</td></tr>
 * <tr><td valign="top" headers="construct characters"><tt>\c</tt><i>x</i></td>
 *     <td headers="matches">The control character corresponding to <i>x</i></td></tr>
 *
 * <tr><th>&nbsp;</th></tr>
 * <tr align="left"><th colspan="2" id="classes">Character classes</th></tr>
 *
 * <tr><td valign="top" headers="construct classes"><tt>[abc]</tt></td>
 *     <td headers="matches"><tt>a</tt>, <tt>b</tt>, or <tt>c</tt> (simple class)</td></tr>
 * <tr><td valign="top" headers="construct classes"><tt>[^abc]</tt></td>
 *     <td headers="matches">Any character except <tt>a</tt>, <tt>b</tt>, or <tt>c</tt> (negation)</td></tr>
 * <tr><td valign="top" headers="construct classes"><tt>[a-zA-Z]</tt></td>
 *     <td headers="matches"><tt>a</tt> through <tt>z</tt>
 *         or <tt>A</tt> through <tt>Z</tt>, inclusive (range)</td></tr>
 * <tr><td valign="top" headers="construct classes"><tt>[a-d[m-p]]</tt></td>
 *     <td headers="matches"><tt>a</tt> through <tt>d</tt>,
 *      or <tt>m</tt> through <tt>p</tt>: <tt>[a-dm-p]</tt> (union)</td></tr>
 * <tr><td valign="top" headers="construct classes"><tt>[a-z&&[def]]</tt></td>
 *     <td headers="matches"><tt>d</tt>, <tt>e</tt>, or <tt>f</tt> (intersection)</tr>
 * <tr><td valign="top" headers="construct classes"><tt>[a-z&&[^bc]]</tt></td>
 *     <td headers="matches"><tt>a</tt> through <tt>z</tt>,
 *         except for <tt>b</tt> and <tt>c</tt>: <tt>[ad-z]</tt> (subtraction)</td></tr>
 * <tr><td valign="top" headers="construct classes"><tt>[a-z&&[^m-p]]</tt></td>
 *     <td headers="matches"><tt>a</tt> through <tt>z</tt>,
 *          and not <tt>m</tt> through <tt>p</tt>: <tt>[a-lq-z]</tt>(subtraction)</td></tr>
 * <tr><th>&nbsp;</th></tr>
 *
 * <tr align="left"><th colspan="2" id="predef">Predefined character classes</th></tr>
 *
 * <tr><td valign="top" headers="construct predef"><tt>.</tt></td>
 *     <td headers="matches">Any character (may or may not match <a href="#lt">line terminators</a>)</td></tr>
 * <tr><td valign="top" headers="construct predef"><tt>\d</tt></td>
 *     <td headers="matches">A digit: <tt>[0-9]</tt></td></tr>
 * <tr><td valign="top" headers="construct predef"><tt>\D</tt></td>
 *     <td headers="matches">A non-digit: <tt>[^0-9]</tt></td></tr>
 * <tr><td valign="top" headers="construct predef"><tt>\s</tt></td>
 *     <td headers="matches">A whitespace character: <tt>[ \t\n\x0B\f\r]</tt></td></tr>
 * <tr><td valign="top" headers="construct predef"><tt>\S</tt></td>
 *     <td headers="matches">A non-whitespace character: <tt>[^\s]</tt></td></tr>
 * <tr><td valign="top" headers="construct predef"><tt>\w</tt></td>
 *     <td headers="matches">A word character: <tt>[a-zA-Z_0-9]</tt></td></tr>
 * <tr><td valign="top" headers="construct predef"><tt>\W</tt></td>
 *     <td headers="matches">A non-word character: <tt>[^\w]</tt></td></tr>
 *
 * <tr><th>&nbsp;</th></tr>
 * <tr align="left"><th colspan="2" id="posix">POSIX character classes</b> (US-ASCII only)<b></th></tr>
 *
 * <tr><td valign="top" headers="construct posix"><tt>\p{Lower}</tt></td>
 *     <td headers="matches">A lower-case alphabetic character: <tt>[a-z]</tt></td></tr>
 * <tr><td valign="top" headers="construct posix"><tt>\p{Upper}</tt></td>
 *     <td headers="matches">An upper-case alphabetic character:<tt>[A-Z]</tt></td></tr>
 * <tr><td valign="top" headers="construct posix"><tt>\p{ASCII}</tt></td>
 *     <td headers="matches">All ASCII:<tt>[\x00-\x7F]</tt></td></tr>
 * <tr><td valign="top" headers="construct posix"><tt>\p{Alpha}</tt></td>
 *     <td headers="matches">An alphabetic character:<tt>[\p{Lower}\p{Upper}]</tt></td></tr>
 * <tr><td valign="top" headers="construct posix"><tt>\p{Digit}</tt></td>
 *     <td headers="matches">A decimal digit: <tt>[0-9]</tt></td></tr>
 * <tr><td valign="top" headers="construct posix"><tt>\p{Alnum}</tt></td>
 *     <td headers="matches">An alphanumeric character:<tt>[\p{Alpha}\p{Digit}]</tt></td></tr>
 * <tr><td valign="top" headers="construct posix"><tt>\p{Punct}</tt></td>
 *     <td headers="matches">Punctuation: One of <tt>!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~</tt></td></tr>
 *     <!-- <tt>[\!"#\$%&'\(\)\*\+,\-\./:;\<=\>\?@\[\\\]\^_`\{\|\}~]</tt>
 *          <tt>[\X21-\X2F\X31-\X40\X5B-\X60\X7B-\X7E]</tt> -->
 * <tr><td valign="top" headers="construct posix"><tt>\p{Graph}</tt></td>
 *     <td headers="matches">A visible character: <tt>[\p{Alnum}\p{Punct}]</tt></td></tr>
 * <tr><td valign="top" headers="construct posix"><tt>\p{Print}</tt></td>
 *     <td headers="matches">A printable character: <tt>[\p{Graph}\x20]</tt></td></tr>
 * <tr><td valign="top" headers="construct posix"><tt>\p{Blank}</tt></td>
 *     <td headers="matches">A space or a tab: <tt>[ \t]</tt></td></tr>
 * <tr><td valign="top" headers="construct posix"><tt>\p{Cntrl}</tt></td>
 *     <td headers="matches">A control character: <tt>[\x00-\x1F\x7F]</tt></td></tr>
 * <tr><td valign="top" headers="construct posix"><tt>\p{XDigit}</tt></td>
 *     <td headers="matches">A hexadecimal digit: <tt>[0-9a-fA-F]</tt></td></tr>
 * <tr><td valign="top" headers="construct posix"><tt>\p{Space}</tt></td>
 *     <td headers="matches">A whitespace character: <tt>[ \t\n\x0B\f\r]</tt></td></tr>
 *
 * <tr><th>&nbsp;</th></tr>
 * <tr align="left"><th colspan="2">java.lang.Character classes (simple <a href="#jcc">java character type</a>)</th></tr>
 *
 * <tr><td valign="top"><tt>\p{javaLowerCase}</tt></td>
 *     <td>Equivalent to java.lang.Character.isLowerCase()</td></tr>
 * <tr><td valign="top"><tt>\p{javaUpperCase}</tt></td>
 *     <td>Equivalent to java.lang.Character.isUpperCase()</td></tr>
 * <tr><td valign="top"><tt>\p{javaWhitespace}</tt></td>
 *     <td>Equivalent to java.lang.Character.isWhitespace()</td></tr>
 * <tr><td valign="top"><tt>\p{javaMirrored}</tt></td>
 *     <td>Equivalent to java.lang.Character.isMirrored()</td></tr>
 *
 * <tr><th>&nbsp;</th></tr>
 * <tr align="left"><th colspan="2" id="unicode">Classes for Unicode blocks and categories</th></tr>
 *
 * <tr><td valign="top" headers="construct unicode"><tt>\p{InGreek}</tt></td>
 *     <td headers="matches">A character in the Greek&nbsp;block (simple <a href="#ubc">block</a>)</td></tr>
 * <tr><td valign="top" headers="construct unicode"><tt>\p{Lu}</tt></td>
 *     <td headers="matches">An uppercase letter (simple <a href="#ubc">category</a>)</td></tr>
 * <tr><td valign="top" headers="construct unicode"><tt>\p{Sc}</tt></td>
 *     <td headers="matches">A currency symbol</td></tr>
 * <tr><td valign="top" headers="construct unicode"><tt>\P{InGreek}</tt></td>
 *     <td headers="matches">Any character except one in the Greek block (negation)</td></tr>
 * <tr><td valign="top" headers="construct unicode"><tt>[\p{L}&&[^\p{Lu}]]&nbsp;</tt></td>
 *     <td headers="matches">Any letter except an uppercase letter (subtraction)</td></tr>
 *
 * <tr><th>&nbsp;</th></tr>
 * <tr align="left"><th colspan="2" id="bounds">Boundary matchers</th></tr>
 *
 * <tr><td valign="top" headers="construct bounds"><tt>^</tt></td>
 *     <td headers="matches">The beginning of a line</td></tr>
 * <tr><td valign="top" headers="construct bounds"><tt>$</tt></td>
 *     <td headers="matches">The end of a line</td></tr>
 * <tr><td valign="top" headers="construct bounds"><tt>\b</tt></td>
 *     <td headers="matches">A word boundary</td></tr>
 * <tr><td valign="top" headers="construct bounds"><tt>\B</tt></td>
 *     <td headers="matches">A non-word boundary</td></tr>
 * <tr><td valign="top" headers="construct bounds"><tt>\A</tt></td>
 *     <td headers="matches">The beginning of the input</td></tr>
 * <tr><td valign="top" headers="construct bounds"><tt>\G</tt></td>
 *     <td headers="matches">The end of the previous match</td></tr>
 * <tr><td valign="top" headers="construct bounds"><tt>\Z</tt></td>
 *     <td headers="matches">The end of the input but for the final
 *         <a href="#lt">terminator</a>, if&nbsp;any</td></tr>
 * <tr><td valign="top" headers="construct bounds"><tt>\z</tt></td>
 *     <td headers="matches">The end of the input</td></tr>
 *
 * <tr><th>&nbsp;</th></tr>
 * <tr align="left"><th colspan="2" id="greedy">Greedy quantifiers</th></tr>
 *
 * <tr><td valign="top" headers="construct greedy"><i>X</i><tt>?</tt></td>
 *     <td headers="matches"><i>X</i>, once or not at all</td></tr>
 * <tr><td valign="top" headers="construct greedy"><i>X</i><tt>*</tt></td>
 *     <td headers="matches"><i>X</i>, zero or more times</td></tr>
 * <tr><td valign="top" headers="construct greedy"><i>X</i><tt>+</tt></td>
 *     <td headers="matches"><i>X</i>, one or more times</td></tr>
 * <tr><td valign="top" headers="construct greedy"><i>X</i><tt>{</tt><i>n</i><tt>}</tt></td>
 *     <td headers="matches"><i>X</i>, exactly <i>n</i> times</td></tr>
 * <tr><td valign="top" headers="construct greedy"><i>X</i><tt>{</tt><i>n</i><tt>,}</tt></td>
 *     <td headers="matches"><i>X</i>, at least <i>n</i> times</td></tr>
 * <tr><td valign="top" headers="construct greedy"><i>X</i><tt>{</tt><i>n</i><tt>,</tt><i>m</i><tt>}</tt></td>
 *     <td headers="matches"><i>X</i>, at least <i>n</i> but not more than <i>m</i> times</td></tr>
 *
 * <tr><th>&nbsp;</th></tr>
 * <tr align="left"><th colspan="2" id="reluc">Reluctant quantifiers</th></tr>
 *
 * <tr><td valign="top" headers="construct reluc"><i>X</i><tt>??</tt></td>
 *     <td headers="matches"><i>X</i>, once or not at all</td></tr>
 * <tr><td valign="top" headers="construct reluc"><i>X</i><tt>*?</tt></td>
 *     <td headers="matches"><i>X</i>, zero or more times</td></tr>
 * <tr><td valign="top" headers="construct reluc"><i>X</i><tt>+?</tt></td>
 *     <td headers="matches"><i>X</i>, one or more times</td></tr>
 * <tr><td valign="top" headers="construct reluc"><i>X</i><tt>{</tt><i>n</i><tt>}?</tt></td>
 *     <td headers="matches"><i>X</i>, exactly <i>n</i> times</td></tr>
 * <tr><td valign="top" headers="construct reluc"><i>X</i><tt>{</tt><i>n</i><tt>,}?</tt></td>
 *     <td headers="matches"><i>X</i>, at least <i>n</i> times</td></tr>
 * <tr><td valign="top" headers="construct reluc"><i>X</i><tt>{</tt><i>n</i><tt>,</tt><i>m</i><tt>}?</tt></td>
 *     <td headers="matches"><i>X</i>, at least <i>n</i> but not more than <i>m</i> times</td></tr>
 *
 * <tr><th>&nbsp;</th></tr>
 * <tr align="left"><th colspan="2" id="poss">Possessive quantifiers</th></tr>
 *
 * <tr><td valign="top" headers="construct poss"><i>X</i><tt>?+</tt></td>
 *     <td headers="matches"><i>X</i>, once or not at all</td></tr>
 * <tr><td valign="top" headers="construct poss"><i>X</i><tt>*+</tt></td>
 *     <td headers="matches"><i>X</i>, zero or more times</td></tr>
 * <tr><td valign="top" headers="construct poss"><i>X</i><tt>++</tt></td>
 *     <td headers="matches"><i>X</i>, one or more times</td></tr>
 * <tr><td valign="top" headers="construct poss"><i>X</i><tt>{</tt><i>n</i><tt>}+</tt></td>
 *     <td headers="matches"><i>X</i>, exactly <i>n</i> times</td></tr>
 * <tr><td valign="top" headers="construct poss"><i>X</i><tt>{</tt><i>n</i><tt>,}+</tt></td>
 *     <td headers="matches"><i>X</i>, at least <i>n</i> times</td></tr>
 * <tr><td valign="top" headers="construct poss"><i>X</i><tt>{</tt><i>n</i><tt>,</tt><i>m</i><tt>}+</tt></td>
 *     <td headers="matches"><i>X</i>, at least <i>n</i> but not more than <i>m</i> times</td></tr>
 *
 * <tr><th>&nbsp;</th></tr>
 * <tr align="left"><th colspan="2" id="logical">Logical operators</th></tr>
 *
 * <tr><td valign="top" headers="construct logical"><i>XY</i></td>
 *     <td headers="matches"><i>X</i> followed by <i>Y</i></td></tr>
 * <tr><td valign="top" headers="construct logical"><i>X</i><tt>|</tt><i>Y</i></td>
 *     <td headers="matches">Either <i>X</i> or <i>Y</i></td></tr>
 * <tr><td valign="top" headers="construct logical"><tt>(</tt><i>X</i><tt>)</tt></td>
 *     <td headers="matches">X, as a <a href="#cg">capturing group</a></td></tr>
 *
 * <tr><th>&nbsp;</th></tr>
 * <tr align="left"><th colspan="2" id="backref">Back references</th></tr>
 *
 * <tr><td valign="bottom" headers="construct backref"><tt>\</tt><i>n</i></td>
 *     <td valign="bottom" headers="matches">Whatever the <i>n</i><sup>th</sup>
 *     <a href="#cg">capturing group</a> matched</td></tr>
 *
 * <tr><th>&nbsp;</th></tr>
 * <tr align="left"><th colspan="2" id="quot">Quotation</th></tr>
 *
 * <tr><td valign="top" headers="construct quot"><tt>\</tt></td>
 *     <td headers="matches">Nothing, but quotes the following character</td></tr>
 * <tr><td valign="top" headers="construct quot"><tt>\Q</tt></td>
 *     <td headers="matches">Nothing, but quotes all characters until <tt>\E</tt></td></tr>
 * <tr><td valign="top" headers="construct quot"><tt>\E</tt></td>
 *     <td headers="matches">Nothing, but ends quoting started by <tt>\Q</tt></td></tr>
 *     <!-- Metachars: !$()*+.<>?[\]^{|} -->
 *
 * <tr><th>&nbsp;</th></tr>
 * <tr align="left"><th colspan="2" id="special">Special constructs (non-capturing)</th></tr>
 *
 * <tr><td valign="top" headers="construct special"><tt>(?:</tt><i>X</i><tt>)</tt></td>
 *     <td headers="matches"><i>X</i>, as a non-capturing group</td></tr>
 * <tr><td valign="top" headers="construct special"><tt>(?idmsux-idmsux)&nbsp;</tt></td>
 *     <td headers="matches">Nothing, but turns match flags <a href="#CASE_INSENSITIVE">i</a>
 * <a href="#UNIX_LINES">d</a> <a href="#MULTILINE">m</a> <a href="#DOTALL">s</a>
 * <a href="#UNICODE_CASE">u</a> <a href="#COMMENTS">x</a> on - off</td></tr>
 * <tr><td valign="top" headers="construct special"><tt>(?idmsux-idmsux:</tt><i>X</i><tt>)</tt>&nbsp;&nbsp;</td>
 *     <td headers="matches"><i>X</i>, as a <a href="#cg">non-capturing group</a> with the
 *         given flags <a href="#CASE_INSENSITIVE">i</a> <a href="#UNIX_LINES">d</a>
 * <a href="#MULTILINE">m</a> <a href="#DOTALL">s</a> <a href="#UNICODE_CASE">u</a >
 * <a href="#COMMENTS">x</a> on - off</td></tr>
 * <tr><td valign="top" headers="construct special"><tt>(?=</tt><i>X</i><tt>)</tt></td>
 *     <td headers="matches"><i>X</i>, via zero-width positive lookahead</td></tr>
 * <tr><td valign="top" headers="construct special"><tt>(?!</tt><i>X</i><tt>)</tt></td>
 *     <td headers="matches"><i>X</i>, via zero-width negative lookahead</td></tr>
 * <tr><td valign="top" headers="construct special"><tt>(?&lt;=</tt><i>X</i><tt>)</tt></td>
 *     <td headers="matches"><i>X</i>, via zero-width positive lookbehind</td></tr>
 * <tr><td valign="top" headers="construct special"><tt>(?&lt;!</tt><i>X</i><tt>)</tt></td>
 *     <td headers="matches"><i>X</i>, via zero-width negative lookbehind</td></tr>
 * <tr><td valign="top" headers="construct special"><tt>(?&gt;</tt><i>X</i><tt>)</tt></td>
 *     <td headers="matches"><i>X</i>, as an independent, non-capturing group</td></tr>
 *
 * </table>
 *
 * <hr>
 *
 *
 * <a name="bs">
 * <h4> Backslashes, escapes, and quoting </h4>
 *
 * <p> The backslash character (<tt>'\'</tt>) serves to introduce escaped
 * constructs, as defined in the table above, as well as to quote characters
 * that otherwise would be interpreted as unescaped constructs.  Thus the
 * expression <tt>\\</tt> matches a single backslash and <tt>\{</tt> matches a
 * left brace.
 *
 * <p> It is an error to use a backslash prior to any alphabetic character that
 * does not denote an escaped construct; these are reserved for future
 * extensions to the regular-expression language.  A backslash may be used
 * prior to a non-alphabetic character regardless of whether that character is
 * part of an unescaped construct.
 *
 * <p> Backslashes within string literals in Java source code are interpreted
 * as required by the <a
 * href="http://java.sun.com/docs/books/jls">Java Language
 * Specification</a> as either <a
 * href="http://java.sun.com/docs/books/jls/third_edition/html/lexical.html#100850">Unicode
 * escapes</a> or other <a
 * href="http://java.sun.com/docs/books/jls/third_edition/html/lexical.html#101089">character
 * escapes</a>.  It is therefore necessary to double backslashes in string
 * literals that represent regular expressions to protect them from
 * interpretation by the Java bytecode compiler.  The string literal
 * <tt>"&#92;b"</tt>, for example, matches a single backspace character when
 * interpreted as a regular expression, while <tt>"&#92;&#92;b"</tt> matches a
 * word boundary.  The string literal <tt>"&#92;(hello&#92;)"</tt> is illegal
 * and leads to a compile-time error; in order to match the string
 * <tt>(hello)</tt> the string literal <tt>"&#92;&#92;(hello&#92;&#92;)"</tt>
 * must be used.
 *
 * <a name="cc">
 * <h4> Character Classes </h4>
 *
 *    <p> Character classes may appear within other character classes, and
 *    may be composed by the union operator (implicit) and the intersection
 *    operator (<tt>&amp;&amp;</tt>).
 *    The union operator denotes a class that contains every character that is
 *    in at least one of its operand classes.  The intersection operator
 *    denotes a class that contains every character that is in both of its
 *    operand classes.
 *
 *    <p> The precedence of character-class operators is as follows, from
 *    highest to lowest:
 *
 *    <blockquote><table border="0" cellpadding="1" cellspacing="0"
 *                 summary="Precedence of character class operators.">
 *      <tr><th>1&nbsp;&nbsp;&nbsp;&nbsp;</th>
 *	  <td>Literal escape&nbsp;&nbsp;&nbsp;&nbsp;</td>
 *	  <td><tt>\x</tt></td></tr>
 *     <tr><th>2&nbsp;&nbsp;&nbsp;&nbsp;</th>
 *	  <td>Grouping</td>
 *	  <td><tt>[...]</tt></td></tr>
 *     <tr><th>3&nbsp;&nbsp;&nbsp;&nbsp;</th>
 *	  <td>Range</td>
 *	  <td><tt>a-z</tt></td></tr>
 *      <tr><th>4&nbsp;&nbsp;&nbsp;&nbsp;</th>
 *	  <td>Union</td>
 *	  <td><tt>[a-e][i-u]</tt></td></tr>
 *      <tr><th>5&nbsp;&nbsp;&nbsp;&nbsp;</th>
 *	  <td>Intersection</td>
 *	  <td><tt>[a-z&&[aeiou]]</tt></td></tr>
 *    </table></blockquote>
 *
 *    <p> Note that a different set of metacharacters are in effect inside
 *    a character class than outside a character class. For instance, the
 *    regular expression <tt>.</tt> loses its special meaning inside a
 *    character class, while the expression <tt>-</tt> becomes a range
 *    forming metacharacter.
 *
 * <a name="lt">
 * <h4> Line terminators </h4>
 *
 * <p> A <i>line terminator</i> is a one- or two-character sequence that marks
 * the end of a line of the input character sequence.  The following are
 * recognized as line terminators:
 *
 * <ul>
 *
 *   <li> A newline (line feed) character&nbsp;(<tt>'\n'</tt>),
 *
 *   <li> A carriage-return character followed immediately by a newline
 *   character&nbsp;(<tt>"\r\n"</tt>),
 *
 *   <li> A standalone carriage-return character&nbsp;(<tt>'\r'</tt>),
 *
 *   <li> A next-line character&nbsp;(<tt>'&#92;u0085'</tt>),
 *
 *   <li> A line-separator character&nbsp;(<tt>'&#92;u2028'</tt>), or
 *
 *   <li> A paragraph-separator character&nbsp;(<tt>'&#92;u2029</tt>).
 *
 * </ul>
 * <p>If {@link #UNIX_LINES} mode is activated, then the only line terminators
 * recognized are newline characters.
 *
 * <p> The regular expression <tt>.</tt> matches any character except a line
 * terminator unless the {@link #DOTALL} flag is specified.
 *
 * <p> By default, the regular expressions <tt>^</tt> and <tt>$</tt> ignore
 * line terminators and only match at the beginning and the end, respectively,
 * of the entire input sequence. If {@link #MULTILINE} mode is activated then
 * <tt>^</tt> matches at the beginning of input and after any line terminator
 * except at the end of input. When in {@link #MULTILINE} mode <tt>$</tt>
 * matches just before a line terminator or the end of the input sequence.
 *
 * <a name="cg">
 * <h4> Groups and capturing </h4>
 *
 * <p> Capturing groups are numbered by counting their opening parentheses from
 * left to right.  In the expression <tt>((A)(B(C)))</tt>, for example, there
 * are four such groups: </p>
 *
 * <blockquote><table cellpadding=1 cellspacing=0 summary="Capturing group numberings">
 * <tr><th>1&nbsp;&nbsp;&nbsp;&nbsp;</th>
 *     <td><tt>((A)(B(C)))</tt></td></tr>
 * <tr><th>2&nbsp;&nbsp;&nbsp;&nbsp;</th>
 *     <td><tt>(A)</tt></td></tr>
 * <tr><th>3&nbsp;&nbsp;&nbsp;&nbsp;</th>
 *     <td><tt>(B(C))</tt></td></tr>
 * <tr><th>4&nbsp;&nbsp;&nbsp;&nbsp;</th>
 *     <td><tt>(C)</tt></td></tr>
 * </table></blockquote>
 *
 * <p> Group zero always stands for the entire expression.
 *
 * <p> Capturing groups are so named because, during a match, each subsequence
 * of the input sequence that matches such a group is saved.  The captured
 * subsequence may be used later in the expression, via a back reference, and
 * may also be retrieved from the matcher once the match operation is complete.
 *
 * <p> The captured input associated with a group is always the subsequence
 * that the group most recently matched.  If a group is evaluated a second time
 * because of quantification then its previously-captured value, if any, will
 * be retained if the second evaluation fails.  Matching the string
 * <tt>"aba"</tt> against the expression <tt>(a(b)?)+</tt>, for example, leaves
 * group two set to <tt>"b"</tt>.  All captured input is discarded at the
 * beginning of each match.
 *
 * <p> Groups beginning with <tt>(?</tt> are pure, <i>non-capturing</i> groups
 * that do not capture text and do not count towards the group total.
 *
 *
 * <h4> Unicode support </h4>
 *
 * <p> This class is in conformance with Level 1 of <a
 * href="http://www.unicode.org/reports/tr18/"><i>Unicode Technical
 * Standard #18: Unicode Regular Expression Guidelines</i></a>, plus RL2.1
 * Canonical Equivalents.
 *
 * <p> Unicode escape sequences such as <tt>&#92;u2014</tt> in Java source code
 * are processed as described in <a
 * href="http://java.sun.com/docs/books/jls/third_edition/html/lexical.html#100850">\u00A73.3</a>
 * of the Java Language Specification.  Such escape sequences are also
 * implemented directly by the regular-expression parser so that Unicode
 * escapes can be used in expressions that are read from files or from the
 * keyboard.  Thus the strings <tt>"&#92;u2014"</tt> and <tt>"\\u2014"</tt>,
 * while not equal, compile into the same pattern, which matches the character
 * with hexadecimal value <tt>0x2014</tt>.
 *
 * <a name="ubc"> <p>Unicode blocks and categories are written with the
 * <tt>\p</tt> and <tt>\P</tt> constructs as in
 * Perl. <tt>\p{</tt><i>prop</i><tt>}</tt> matches if the input has the
 * property <i>prop</i>, while <tt>\P{</tt><i>prop</i><tt>}</tt> does not match if
 * the input has that property.  Blocks are specified with the prefix
 * <tt>In</tt>, as in <tt>InMongolian</tt>.  Categories may be specified with
 * the optional prefix <tt>Is</tt>: Both <tt>\p{L}</tt> and <tt>\p{IsL}</tt>
 * denote the category of Unicode letters.  Blocks and categories can be used
 * both inside and outside of a character class.
 *
 * <p> The supported categories are those of
 * <a href="http://www.unicode.org/unicode/standard/standard.html">
 * <i>The Unicode Standard</i></a> in the version specified by the
 * {@link java.lang.Character Character} class. The category names are those
 * defined in the Standard, both normative and informative.
 * The block names supported by <code>Pattern</code> are the valid block names
 * accepted and defined by
 * {@link java.lang.Character.UnicodeBlock#forName(String) UnicodeBlock.forName}.
 *
 * <a name="jcc"> <p>Categories that behave like the java.lang.Character
 * boolean is<i>methodname</i> methods (except for the deprecated ones) are
 * available through the same <tt>\p{</tt><i>prop</i><tt>}</tt> syntax where
 * the specified property has the name <tt>java<i>methodname</i></tt>.
 *
 * <h4> Comparison to Perl 5 </h4>
 *
 * <p>The <code>Pattern</code> engine performs traditional NFA-based matching
 * with ordered alternation as occurs in Perl 5.
 *
 * <p> Perl constructs not supported by this class: </p>
 *
 * <ul>
 *
 *    <li><p> The conditional constructs <tt>(?{</tt><i>X</i><tt>})</tt> and
 *    <tt>(?(</tt><i>condition</i><tt>)</tt><i>X</i><tt>|</tt><i>Y</i><tt>)</tt>,
 *    </p></li>
 *
 *    <li><p> The embedded code constructs <tt>(?{</tt><i>code</i><tt>})</tt>
 *    and <tt>(??{</tt><i>code</i><tt>})</tt>,</p></li>
 *
 *    <li><p> The embedded comment syntax <tt>(?#comment)</tt>, and </p></li>
 *
 *    <li><p> The preprocessing operations <tt>\l</tt> <tt>&#92;u</tt>,
 *    <tt>\L</tt>, and <tt>\U</tt>.  </p></li>
 *
 * </ul>
 *
 * <p> Constructs supported by this class but not by Perl: </p>
 *
 * <ul>
 *
 *    <li><p> Possessive quantifiers, which greedily match as much as they can
 *    and do not back off, even when doing so would allow the overall match to
 *    succeed.  </p></li>
 *
 *    <li><p> Character-class union and intersection as described
 *    <a href="#cc">above</a>.</p></li>
 *
 * </ul>
 *
 * <p> Notable differences from Perl: </p>
 *
 * <ul>
 *
 *    <li><p> In Perl, <tt>\1</tt> through <tt>\9</tt> are always interpreted
 *    as back references; a backslash-escaped number greater than <tt>9</tt> is
 *    treated as a back reference if at least that many subexpressions exist,
 *    otherwise it is interpreted, if possible, as an octal escape.  In this
 *    class octal escapes must always begin with a zero. In this class,
 *    <tt>\1</tt> through <tt>\9</tt> are always interpreted as back
 *    references, and a larger number is accepted as a back reference if at
 *    least that many subexpressions exist at that point in the regular
 *    expression, otherwise the parser will drop digits until the number is
 *    smaller or equal to the existing number of groups or it is one digit.
 *    </p></li>
 *
 *    <li><p> Perl uses the <tt>g</tt> flag to request a match that resumes
 *    where the last match left off.  This functionality is provided implicitly
 *    by the {@link Matcher} class: Repeated invocations of the {@link
 *    Matcher#find find} method will resume where the last match left off,
 *    unless the matcher is reset.  </p></li>
 *
 *    <li><p> In Perl, embedded flags at the top level of an expression affect
 *    the whole expression.  In this class, embedded flags always take effect
 *    at the point at which they appear, whether they are at the top level or
 *    within a group; in the latter case, flags are restored at the end of the
 *    group just as in Perl.  </p></li>
 *
 *    <li><p> Perl is forgiving about malformed matching constructs, as in the
 *    expression <tt>*a</tt>, as well as dangling brackets, as in the
 *    expression <tt>abc]</tt>, and treats them as literals.  This
 *    class also accepts dangling brackets but is strict about dangling
 *    metacharacters like +, ? and *, and will throw a
 *    {@link PatternSyntaxException} if it encounters them. </p></li>
 *
 * </ul>
 *
 *
 * <p> For a more precise description of the behavior of regular expression
 * constructs, please see <a href="http://www.oreilly.com/catalog/regex3/">
 * <i>Mastering Regular Expressions, 3nd Edition</i>, Jeffrey E. F. Friedl,
 * O'Reilly and Associates, 2006.</a>
 * </p>
 *
 * @see java.lang.String#split(String, int)
 * @see java.lang.String#split(String)
 *
 * @author      Mike McCloskey
 * @author      Mark Reinhold
 * @author	JSR-51 Expert Group
 * @version 	1.124, 07/03/15
 * @since       1.4
 * @spec	JSR-51
 */

public final class Pattern implements java.io.Serializable
{

    /**
     * Regular expression modifier values.  Instead of being passed as
     * arguments, they can also be passed as inline modifiers.
     * For example, the following statements have the same effect.
     * <pre>
     * RegExp r1 = RegExp.compile("abc", Pattern.I|Pattern.M);
     * RegExp r2 = RegExp.compile("(?im)abc", 0);
     * </pre>
     *
     * The flags are duplicated so that the familiar Perl match flag
     * names are available.
     */

    /**
     * Enables Unix lines mode.
     *
     * <p> In this mode, only the <tt>'\n'</tt> line terminator is recognized
     * in the behavior of <tt>.</tt>, <tt>^</tt>, and <tt>$</tt>.
     *
     * <p> Unix lines mode can also be enabled via the embedded flag
     * expression&nbsp;<tt>(?d)</tt>.
     */
    public static final int UNIX_LINES = 0x01;

    /**
     * Enables case-insensitive matching.
     *
     * <p> By default, case-insensitive matching assumes that only characters
     * in the US-ASCII charset are being matched.  Unicode-aware
     * case-insensitive matching can be enabled by specifying the {@link
     * #UNICODE_CASE} flag in conjunction with this flag.
     *
     * <p> Case-insensitive matching can also be enabled via the embedded flag
     * expression&nbsp;<tt>(?i)</tt>.
     *
     * <p> Specifying this flag may impose a slight performance penalty.  </p>
     */
    public static final int CASE_INSENSITIVE = 0x02;

    /**
     * Permits whitespace and comments in pattern.
     *
     * <p> In this mode, whitespace is ignored, and embedded comments starting
     * with <tt>#</tt> are ignored until the end of a line.
     *
     * <p> Comments mode can also be enabled via the embedded flag
     * expression&nbsp;<tt>(?x)</tt>.
     */
    public static final int COMMENTS = 0x04;

    /**
     * Enables multiline mode.
     *
     * <p> In multiline mode the expressions <tt>^</tt> and <tt>$</tt> match
     * just after or just before, respectively, a line terminator or the end of
     * the input sequence.  By default these expressions only match at the
     * beginning and the end of the entire input sequence.
     *
     * <p> Multiline mode can also be enabled via the embedded flag
     * expression&nbsp;<tt>(?m)</tt>.  </p>
     */
    public static final int MULTILINE = 0x08;

    /**
     * Enables literal parsing of the pattern.
     *
     * <p> When this flag is specified then the input string that specifies
     * the pattern is treated as a sequence of literal characters.
     * Metacharacters or escape sequences in the input sequence will be
     * given no special meaning.
     *
     * <p>The flags CASE_INSENSITIVE and UNICODE_CASE retain their impact on
     * matching when used in conjunction with this flag. The other flags
     * become superfluous.
     *
     * <p> There is no embedded flag character for enabling literal parsing.
     * @since 1.5
     */
    public static final int LITERAL = 0x10;

    /**
     * Enables dotall mode.
     *
     * <p> In dotall mode, the expression <tt>.</tt> matches any character,
     * including a line terminator.  By default this expression does not match
     * line terminators.
     *
     * <p> Dotall mode can also be enabled via the embedded flag
     * expression&nbsp;<tt>(?s)</tt>.  (The <tt>s</tt> is a mnemonic for
     * "single-line" mode, which is what this is called in Perl.)  </p>
     */
    public static final int DOTALL = 0x20;

    /**
     * Enables Unicode-aware case folding.
     *
     * <p> When this flag is specified then case-insensitive matching, when
     * enabled by the {@link #CASE_INSENSITIVE} flag, is done in a manner
     * consistent with the Unicode Standard.  By default, case-insensitive
     * matching assumes that only characters in the US-ASCII charset are being
     * matched.
     *
     * <p> Unicode-aware case folding can also be enabled via the embedded flag
     * expression&nbsp;<tt>(?u)</tt>.
     *
     * <p> Specifying this flag may impose a performance penalty.  </p>
     */
    public static final int UNICODE_CASE = 0x40;

    /**
     * Enables canonical equivalence.
     *
     * <p> When this flag is specified then two characters will be considered
     * to match if, and only if, their full canonical decompositions match.
     * The expression <tt>"a&#92;u030A"</tt>, for example, will match the
     * string <tt>"&#92;u00E5"</tt> when this flag is specified.  By default,
     * matching does not take canonical equivalence into account.
     *
     * <p> There is no embedded flag character for enabling canonical
     * equivalence.
     *
     * <p> Specifying this flag may impose a performance penalty.  </p>
     */
    public static final int CANON_EQ = 0x80;

    /* Pattern has only two serialized components: The pattern string
     * and the flags, which are all that is needed to recompile the pattern
     * when it is deserialized.
     */

    /** use serialVersionUID from Merlin b59 for interoperability */
    private static final long serialVersionUID = 5073258162644648461L;

    /**
     * The original regular-expression pattern string.
     *
     * @serial
     */
    private String pattern;

    /**
     * The original pattern flags.
     *
     * @serial
     */
    private int flags;

    /**
     * Boolean indicating this Pattern is compiled; this is necessary in order
     * to lazily compile deserialized Patterns.
     */
    private transient volatile boolean compiled = false;

    /**
     * The normalized pattern string.
     */
    private transient String normalizedPattern;

    /**
     * The starting point of state machine for the find operation.  This allows
     * a match to start anywhere in the input.
     */
    transient Node root;

    /**
     * The root of object tree for a match operation.  The pattern is matched
     * at the beginning.  This may include a find that uses BnM or a First
     * node.
     */
    transient Node matchRoot;

    /**
     * Temporary storage used by parsing pattern slice.
     */
    transient int[] buffer;

    /**
     * Temporary storage used while parsing group references.
     */
    transient GroupHead[] groupNodes;

    /**
     * Temporary null terminated code point array used by pattern compiling.
     */
    private transient int[] temp;

    /**
     * The number of capturing groups in this Pattern. Used by matchers to
     * allocate storage needed to perform a match.
     */
    transient int capturingGroupCount;

    /**
     * The local variable count used by parsing tree. Used by matchers to
     * allocate storage needed to perform a match.
     */
    transient int localCount;

    /**
     * Index into the pattern string that keeps track of how much has been
     * parsed.
     */
    private transient int cursor;

    /**
     * Holds the length of the pattern string.
     */
    private transient int patternLength;

    /**
     * Compiles the given regular expression into a pattern.  </p>
     *
     * @param  regex
     *         The expression to be compiled
     *
     * @throws  PatternSyntaxException
     *          If the expression's syntax is invalid
     */
    public static Pattern compile(String regex) {
        return new Pattern(regex, 0);
    }

    /**
     * Compiles the given regular expression into a pattern with the given
     * flags.  </p>
     *
     * @param  regex
     *         The expression to be compiled
     *
     * @param  flags
     *         Match flags, a bit mask that may include
     *         {@link #CASE_INSENSITIVE}, {@link #MULTILINE}, {@link #DOTALL},
     *         {@link #UNICODE_CASE}, {@link #CANON_EQ}, {@link #UNIX_LINES},
     *         {@link #LITERAL} and {@link #COMMENTS}
     *
     * @throws  IllegalArgumentException
     *          If bit values other than those corresponding to the defined
     *          match flags are set in <tt>flags</tt>
     *
     * @throws  PatternSyntaxException
     *          If the expression's syntax is invalid
     */
    public static Pattern compile(String regex, int flags) {
        return new Pattern(regex, flags);
    }

    /**
     * Returns the regular expression from which this pattern was compiled.
     * </p>
     *
     * @return  The source of this pattern
     */
    public String pattern() {
        return pattern;
    }

    /**
     * <p>Returns the string representation of this pattern. This
     * is the regular expression from which this pattern was
     * compiled.</p>
     *
     * @return  The string representation of this pattern
     * @since 1.5
     */
    public String toString() {
        return pattern;
    }

    /**
     * Creates a matcher that will match the given input against this pattern.
     * </p>
     *
     * @param  input
     *         The character sequence to be matched
     *
     * @return  A new matcher for this pattern
     */
    public Matcher matcher(CharSequence input) {
	if (!compiled) {
	    synchronized(this) {
		if (!compiled)
		    compile();
	    }
	}
        Matcher m = new Matcher(this, input);
        return m;
    }

    /**
     * Returns this pattern's match flags.  </p>
     *
     * @return  The match flags specified when this pattern was compiled
     */
    public int flags() {
        return flags;
    }

    /**
     * Compiles the given regular expression and attempts to match the given
     * input against it.
     *
     * <p> An invocation of this convenience method of the form
     *
     * <blockquote><pre>
     * Pattern.matches(regex, input);</pre></blockquote>
     *
     * behaves in exactly the same way as the expression
     *
     * <blockquote><pre>
     * Pattern.compile(regex).matcher(input).matches()</pre></blockquote>
     *
     * <p> If a pattern is to be used multiple times, compiling it once and reusing
     * it will be more efficient than invoking this method each time.  </p>
     *
     * @param  regex
     *         The expression to be compiled
     *
     * @param  input
     *         The character sequence to be matched
     *
     * @throws  PatternSyntaxException
     *          If the expression's syntax is invalid
     */
    public static boolean matches(String regex, CharSequence input) {
        Pattern p = Pattern.compile(regex);
        Matcher m = p.matcher(input);
        return m.matches();
    }

    /**
     * Splits the given input sequence around matches of this pattern.
     *
     * <p> The array returned by this method contains each substring of the
     * input sequence that is terminated by another subsequence that matches
     * this pattern or is terminated by the end of the input sequence.  The
     * substrings in the array are in the order in which they occur in the
     * input.  If this pattern does not match any subsequence of the input then
     * the resulting array has just one element, namely the input sequence in
     * string form.
     *
     * <p> The <tt>limit</tt> parameter controls the number of times the
     * pattern is applied and therefore affects the length of the resulting
     * array.  If the limit <i>n</i> is greater than zero then the pattern
     * will be applied at most <i>n</i>&nbsp;-&nbsp;1 times, the array's
     * length will be no greater than <i>n</i>, and the array's last entry
     * will contain all input beyond the last matched delimiter.  If <i>n</i>
     * is non-positive then the pattern will be applied as many times as
     * possible and the array can have any length.  If <i>n</i> is zero then
     * the pattern will be applied as many times as possible, the array can
     * have any length, and trailing empty strings will be discarded.
     *
     * <p> The input <tt>"boo:and:foo"</tt>, for example, yields the following
     * results with these parameters:
     *
     * <blockquote><table cellpadding=1 cellspacing=0
     *              summary="Split examples showing regex, limit, and result">
     * <tr><th><P align="left"><i>Regex&nbsp;&nbsp;&nbsp;&nbsp;</i></th>
     *     <th><P align="left"><i>Limit&nbsp;&nbsp;&nbsp;&nbsp;</i></th>
     *     <th><P align="left"><i>Result&nbsp;&nbsp;&nbsp;&nbsp;</i></th></tr>
     * <tr><td align=center>:</td>
     *     <td align=center>2</td>
     *     <td><tt>{ "boo", "and:foo" }</tt></td></tr>
     * <tr><td align=center>:</td>
     *     <td align=center>5</td>
     *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>
     * <tr><td align=center>:</td>
     *     <td align=center>-2</td>
     *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>
     * <tr><td align=center>o</td>
     *     <td align=center>5</td>
     *     <td><tt>{ "b", "", ":and:f", "", "" }</tt></td></tr>
     * <tr><td align=center>o</td>
     *     <td align=center>-2</td>
     *     <td><tt>{ "b", "", ":and:f", "", "" }</tt></td></tr>
     * <tr><td align=center>o</td>
     *     <td align=center>0</td>
     *     <td><tt>{ "b", "", ":and:f" }</tt></td></tr>
     * </table></blockquote>
     *
     *
     * @param  input
     *         The character sequence to be split
     *
     * @param  limit
     *         The result threshold, as described above
     *
     * @return  The array of strings computed by splitting the input
     *          around matches of this pattern
     */
    public String[] split(CharSequence input, int limit) {
        int index = 0;
        boolean matchLimited = limit > 0;
        ArrayList<String> matchList = new ArrayList<String>();
        Matcher m = matcher(input);

        // Add segments before each match found
        while(m.find()) {
            if (!matchLimited || matchList.size() < limit - 1) {
                String match = input.subSequence(index, m.start()).toString();
                matchList.add(match);
                index = m.end();
            } else if (matchList.size() == limit - 1) { // last one
                String match = input.subSequence(index,
                                                 input.length()).toString();
                matchList.add(match);
                index = m.end();
            }
        }

        // If no match was found, return this
        if (index == 0)
            return new String[] {input.toString()};

        // Add remaining segment
        if (!matchLimited || matchList.size() < limit)
            matchList.add(input.subSequence(index, input.length()).toString());

        // Construct result
        int resultSize = matchList.size();
        if (limit == 0)
            while (resultSize > 0 && matchList.get(resultSize-1).equals(""))
                resultSize--;
        String[] result = new String[resultSize];
        return matchList.subList(0, resultSize).toArray(result);
    }

    /**
     * Splits the given input sequence around matches of this pattern.
     *
     * <p> This method works as if by invoking the two-argument {@link
     * #split(java.lang.CharSequence, int) split} method with the given input
     * sequence and a limit argument of zero.  Trailing empty strings are
     * therefore not included in the resulting array. </p>
     *
     * <p> The input <tt>"boo:and:foo"</tt>, for example, yields the following
     * results with these expressions:
     *
     * <blockquote><table cellpadding=1 cellspacing=0
     *              summary="Split examples showing regex and result">
     * <tr><th><P align="left"><i>Regex&nbsp;&nbsp;&nbsp;&nbsp;</i></th>
     *     <th><P align="left"><i>Result</i></th></tr>
     * <tr><td align=center>:</td>
     *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>
     * <tr><td align=center>o</td>
     *     <td><tt>{ "b", "", ":and:f" }</tt></td></tr>
     * </table></blockquote>
     *
     *
     * @param  input
     *         The character sequence to be split
     *
     * @return  The array of strings computed by splitting the input
     *          around matches of this pattern
     */
    public String[] split(CharSequence input) {
        return split(input, 0);
    }

    /**
     * Returns a literal pattern <code>String</code> for the specified
     * <code>String</code>.
     *
     * <p>This method produces a <code>String</code> that can be used to
     * create a <code>Pattern</code> that would match the string
     * <code>s</code> as if it were a literal pattern.</p> Metacharacters
     * or escape sequences in the input sequence will be given no special
     * meaning.
     *
     * @param  s The string to be literalized
     * @return  A literal string replacement
     * @since 1.5
     */
    public static String quote(String s) {
        int slashEIndex = s.indexOf("\\E");
        if (slashEIndex == -1)
            return "\\Q" + s + "\\E";

        StringBuilder sb = new StringBuilder(s.length() * 2);
        sb.append("\\Q");
        slashEIndex = 0;
        int current = 0;
        while ((slashEIndex = s.indexOf("\\E", current)) != -1) {
            sb.append(s.substring(current, slashEIndex));
            current = slashEIndex + 2;
            sb.append("\\E\\\\E\\Q");
        }
        sb.append(s.substring(current, s.length()));
        sb.append("\\E");
        return sb.toString();
    }

    /**
     * Recompile the Pattern instance from a stream.  The original pattern
     * string is read in and the object tree is recompiled from it.
     */
    private void readObject(java.io.ObjectInputStream s)
        throws java.io.IOException, ClassNotFoundException {

        // Read in all fields
	s.defaultReadObject();

        // Initialize counts
        capturingGroupCount = 1;
        localCount = 0;

        // if length > 0, the Pattern is lazily compiled
        compiled = false;
        if (pattern.length() == 0) {
            root = new Start(lastAccept);
            matchRoot = lastAccept;
            compiled = true;
        }
    }

    /**
     * This private constructor is used to create all Patterns. The pattern
     * string and match flags are all that is needed to completely describe
     * a Pattern. An empty pattern string results in an object tree with
     * only a Start node and a LastNode node.
     */
    private Pattern(String p, int f) {
        pattern = p;
        flags = f;

        // Reset group index count
        capturingGroupCount = 1;
        localCount = 0;

        if (pattern.length() > 0) {
            compile();
        } else {
            root = new Start(lastAccept);
            matchRoot = lastAccept;
        }
    }

    /**
     * The pattern is converted to normalizedD form and then a pure group
     * is constructed to match canonical equivalences of the characters.
     */
    private void normalize() {
        boolean inCharClass = false;
        int lastCodePoint = -1;

        // Convert pattern into normalizedD form
        normalizedPattern = Normalizer.normalize(pattern, Normalizer.Form.NFD);
        patternLength = normalizedPattern.length();

        // Modify pattern to match canonical equivalences
        StringBuilder newPattern = new StringBuilder(patternLength);
        for(int i=0; i<patternLength; ) {
            int c = normalizedPattern.codePointAt(i);
            StringBuilder sequenceBuffer;
            if ((Character.getType(c) == Character.NON_SPACING_MARK)
                && (lastCodePoint != -1)) {
                sequenceBuffer = new StringBuilder();
                sequenceBuffer.appendCodePoint(lastCodePoint);
                sequenceBuffer.appendCodePoint(c);
                while(Character.getType(c) == Character.NON_SPACING_MARK) {
                    i += Character.charCount(c);
                    if (i >= patternLength)
                        break;
                    c = normalizedPattern.codePointAt(i);
                    sequenceBuffer.appendCodePoint(c);
                }
                String ea = produceEquivalentAlternation(
                                               sequenceBuffer.toString());
                newPattern.setLength(newPattern.length()-Character.charCount(lastCodePoint));
                newPattern.append("(?:").append(ea).append(")");
            } else if (c == '[' && lastCodePoint != '\\') {
                i = normalizeCharClass(newPattern, i);
            } else {
                newPattern.appendCodePoint(c);
            }
            lastCodePoint = c;
	    i += Character.charCount(c);
        }
        normalizedPattern = newPattern.toString();
    }

    /**
     * Complete the character class being parsed and add a set
     * of alternations to it that will match the canonical equivalences
     * of the characters within the class.
     */
    private int normalizeCharClass(StringBuilder newPattern, int i) {
        StringBuilder charClass = new StringBuilder();
        StringBuilder eq = null;
        int lastCodePoint = -1;
        String result;

        i++;
        charClass.append("[");
        while(true) {
            int c = normalizedPattern.codePointAt(i);
            StringBuilder sequenceBuffer;

            if (c == ']' && lastCodePoint != '\\') {
                charClass.append((char)c);
                break;
            } else if (Character.getType(c) == Character.NON_SPACING_MARK) {
                sequenceBuffer = new StringBuilder();
                sequenceBuffer.appendCodePoint(lastCodePoint);
                while(Character.getType(c) == Character.NON_SPACING_MARK) {
                    sequenceBuffer.appendCodePoint(c);
                    i += Character.charCount(c);
                    if (i >= normalizedPattern.length())
                        break;
                    c = normalizedPattern.codePointAt(i);
                }
                String ea = produceEquivalentAlternation(
                                                  sequenceBuffer.toString());

                charClass.setLength(charClass.length()-Character.charCount(lastCodePoint));
                if (eq == null)
                    eq = new StringBuilder();
                eq.append('|');
                eq.append(ea);
            } else {
                charClass.appendCodePoint(c);
                i++;
            }
            if (i == normalizedPattern.length())
                throw error("Unclosed character class");
            lastCodePoint = c;
        }

        if (eq != null) {
            result = "(?:"+charClass.toString()+eq.toString()+")";
        } else {
            result = charClass.toString();
        }

        newPattern.append(result);
        return i;
    }

    /**
     * Given a specific sequence composed of a regular character and
     * combining marks that follow it, produce the alternation that will
     * match all canonical equivalences of that sequence.
     */
    private String produceEquivalentAlternation(String source) {
	int len = countChars(source, 0, 1);
        if (source.length() == len)
	    // source has one character.
            return source;

        String base = source.substring(0,len);
        String combiningMarks = source.substring(len);

        String[] perms = producePermutations(combiningMarks);
        StringBuilder result = new StringBuilder(source);

        // Add combined permutations
        for(int x=0; x<perms.length; x++) {
            String next = base + perms[x];
            if (x>0)
                result.append("|"+next);
            next = composeOneStep(next);
            if (next != null)
                result.append("|"+produceEquivalentAlternation(next));
        }
        return result.toString();
    }

    /**
     * Returns an array of strings that have all the possible
     * permutations of the characters in the input string.
     * This is used to get a list of all possible orderings
     * of a set of combining marks. Note that some of the permutations
     * are invalid because of combining class collisions, and these
     * possibilities must be removed because they are not canonically
     * equivalent.
     */
    private String[] producePermutations(String input) {
        if (input.length() == countChars(input, 0, 1))
            return new String[] {input};

        if (input.length() == countChars(input, 0, 2)) {
	    int c0 = Character.codePointAt(input, 0);
	    int c1 = Character.codePointAt(input, Character.charCount(c0));
            if (getClass(c1) == getClass(c0)) {
                return new String[] {input};
            }
            String[] result = new String[2];
            result[0] = input;
            StringBuilder sb = new StringBuilder(2);
	    sb.appendCodePoint(c1);
	    sb.appendCodePoint(c0);
            result[1] = sb.toString();
            return result;
        }

        int length = 1;
	int nCodePoints = countCodePoints(input);
        for(int x=1; x<nCodePoints; x++)
            length = length * (x+1);

        String[] temp = new String[length];

        int combClass[] = new int[nCodePoints];
        for(int x=0, i=0; x<nCodePoints; x++) {
	    int c = Character.codePointAt(input, i);
            combClass[x] = getClass(c);
	    i +=  Character.charCount(c);
	}

        // For each char, take it out and add the permutations
        // of the remaining chars
        int index = 0;
	int len;
	// offset maintains the index in code units.
loop:   for(int x=0, offset=0; x<nCodePoints; x++, offset+=len) {
	    len = countChars(input, offset, 1);
            boolean skip = false;
            for(int y=x-1; y>=0; y--) {
                if (combClass[y] == combClass[x]) {
                    continue loop;
                }
            }
            StringBuilder sb = new StringBuilder(input);
            String otherChars = sb.delete(offset, offset+len).toString();
            String[] subResult = producePermutations(otherChars);

            String prefix = input.substring(offset, offset+len);
            for(int y=0; y<subResult.length; y++)
                temp[index++] =  prefix + subResult[y];
        }
        String[] result = new String[index];
        for (int x=0; x<index; x++)
            result[x] = temp[x];
        return result;
    }

    private int getClass(int c) {
        return sun.text.Normalizer.getCombiningClass(c);
    }

    /**
     * Attempts to compose input by combining the first character
     * with the first combining mark following it. Returns a String
     * that is the composition of the leading character with its first
     * combining mark followed by the remaining combining marks. Returns
     * null if the first two characters cannot be further composed.
     */
    private String composeOneStep(String input) {
	int len = countChars(input, 0, 2);
        String firstTwoCharacters = input.substring(0, len);
        String result = Normalizer.normalize(firstTwoCharacters, Normalizer.Form.NFC);

        if (result.equals(firstTwoCharacters))
            return null;
        else {
            String remainder = input.substring(len);
            return result + remainder;
        }
    }

    /**
     * Preprocess any \Q...\E sequences in `temp', meta-quoting them.
     * See the description of `quotemeta' in perlfunc(1).
     */
    private void RemoveQEQuoting() {
	final int pLen = patternLength;
	int i = 0;
	while (i < pLen-1) {
	    if (temp[i] != '\\')
		i += 1;
	    else if (temp[i + 1] != 'Q')
		i += 2;
	    else
		break;
	}
	if (i >= pLen - 1)    // No \Q sequence found
	    return;
	int j = i;
	i += 2;
	int[] newtemp = new int[j + 2*(pLen-i) + 2];
	System.arraycopy(temp, 0, newtemp, 0, j);

	boolean inQuote = true;
	while (i < pLen) {
	    int c = temp[i++];
	    if (! ASCII.isAscii(c) || ASCII.isAlnum(c)) {
		newtemp[j++] = c;
	    } else if (c != '\\') {
		if (inQuote) newtemp[j++] = '\\';
		newtemp[j++] = c;
	    } else if (inQuote) {
		if (temp[i] == 'E') {
		    i++;
		    inQuote = false;
		} else {
		    newtemp[j++] = '\\';
		    newtemp[j++] = '\\';
		}
	    } else {
		if (temp[i] == 'Q') {
		    i++;
		    inQuote = true;
		} else {
		    newtemp[j++] = c;
		    if (i != pLen)
			newtemp[j++] = temp[i++];
		}
	    }
	}

	patternLength = j;
	temp = Arrays.copyOf(newtemp, j + 2); // double zero termination
    }

    /**
     * Copies regular expression to an int array and invokes the parsing
     * of the expression which will create the object tree.
     */
    private void compile() {
        // Handle canonical equivalences
        if (has(CANON_EQ) && !has(LITERAL)) {
            normalize();
        } else {
            normalizedPattern = pattern;
        }
        patternLength = normalizedPattern.length();

        // Copy pattern to int array for convenience
        // Use double zero to terminate pattern
        temp = new int[patternLength + 2];

	boolean hasSupplementary = false;
	int c, count = 0;
	// Convert all chars into code points
	for (int x = 0; x < patternLength; x += Character.charCount(c)) {
	    c = normalizedPattern.codePointAt(x);
	    if (isSupplementary(c)) {
		hasSupplementary = true;
	    }
	    temp[count++] = c;
	}

	patternLength = count;   // patternLength now in code points

	if (! has(LITERAL))
	    RemoveQEQuoting();

        // Allocate all temporary objects here.
        buffer = new int[32];
        groupNodes = new GroupHead[10];

        if (has(LITERAL)) {
            // Literal pattern handling
            matchRoot = newSlice(temp, patternLength, hasSupplementary);
            matchRoot.next = lastAccept;
        } else {
            // Start recursive descent parsing
            matchRoot = expr(lastAccept);
            // Check extra pattern characters
            if (patternLength != cursor) {
                if (peek() == ')') {
                    throw error("Unmatched closing ')'");
                } else {
                    throw error("Unexpected internal error");
                }
            }
        }

        // Peephole optimization
        if (matchRoot instanceof Slice) {
            root = BnM.optimize(matchRoot);
            if (root == matchRoot) {
                root = hasSupplementary ? new StartS(matchRoot) : new Start(matchRoot);
            }
        } else if (matchRoot instanceof Begin || matchRoot instanceof First) {
            root = matchRoot;
        } else {
            root = hasSupplementary ? new StartS(matchRoot) : new Start(matchRoot);
        }

        // Release temporary storage
        temp = null;
        buffer = null;
        groupNodes = null;
        patternLength = 0;
        compiled = true;
    }

    /**
     * Used to print out a subtree of the Pattern to help with debugging.
     */
    private static void printObjectTree(Node node) {
        while(node != null) {
            if (node instanceof Prolog) {
                System.out.println(node);
                printObjectTree(((Prolog)node).loop);
                System.out.println("**** end contents prolog loop");
            } else if (node instanceof Loop) {
                System.out.println(node);
                printObjectTree(((Loop)node).body);
                System.out.println("**** end contents Loop body");
            } else if (node instanceof Curly) {
                System.out.println(node);
                printObjectTree(((Curly)node).atom);
                System.out.println("**** end contents Curly body");
            } else if (node instanceof GroupCurly) {
                System.out.println(node);
                printObjectTree(((GroupCurly)node).atom);
                System.out.println("**** end contents GroupCurly body");
            } else if (node instanceof GroupTail) {
                System.out.println(node);
                System.out.println("Tail next is "+node.next);
                return;
            } else {
                System.out.println(node);
            }
            node = node.next;
            if (node != null)
                System.out.println("->next:");
            if (node == Pattern.accept) {
                System.out.println("Accept Node");
                node = null;
            }
       }
    }

    /**
     * Used to accumulate information about a subtree of the object graph
     * so that optimizations can be applied to the subtree.
     */
    static final class TreeInfo {
        int minLength;
        int maxLength;
        boolean maxValid;
        boolean deterministic;

        TreeInfo() {
            reset();
        }
        void reset() {
            minLength = 0;
            maxLength = 0;
            maxValid = true;
            deterministic = true;
        }
    }

    /*
     * The following private methods are mainly used to improve the
     * readability of the code. In order to let the Java compiler easily
     * inline them, we should not put many assertions or error checks in them.
     */

    /**
     * Indicates whether a particular flag is set or not.
     */
    private boolean has(int f) {
        return (flags & f) != 0;
    }

    /**
     * Match next character, signal error if failed.
     */
    private void accept(int ch, String s) {
        int testChar = temp[cursor++];
        if (has(COMMENTS))
            testChar = parsePastWhitespace(testChar);
        if (ch != testChar) {
	    throw error(s);
        }
    }

    /**
     * Mark the end of pattern with a specific character.
     */
    private void mark(int c) {
        temp[patternLength] = c;
    }

    /**
     * Peek the next character, and do not advance the cursor.
     */
    private int peek() {
        int ch = temp[cursor];
        if (has(COMMENTS))
            ch = peekPastWhitespace(ch);
        return ch;
    }

    /**
     * Read the next character, and advance the cursor by one.
     */
    private int read() {
        int ch = temp[cursor++];
        if (has(COMMENTS))
            ch = parsePastWhitespace(ch);
        return ch;
    }

    /**
     * Read the next character, and advance the cursor by one,
     * ignoring the COMMENTS setting
     */
    private int readEscaped() {
        int ch = temp[cursor++];
        return ch;
    }

    /**
     * Advance the cursor by one, and peek the next character.
     */
    private int next() {
        int ch = temp[++cursor];
        if (has(COMMENTS))
            ch = peekPastWhitespace(ch);
        return ch;
    }

    /**
     * Advance the cursor by one, and peek the next character,
     * ignoring the COMMENTS setting
     */
    private int nextEscaped() {
        int ch = temp[++cursor];
        return ch;
    }

    /**
     * If in xmode peek past whitespace and comments.
     */
    private int peekPastWhitespace(int ch) {
        while (ASCII.isSpace(ch) || ch == '#') {
            while (ASCII.isSpace(ch))
                ch = temp[++cursor];
            if (ch == '#') {
                ch = peekPastLine();
            }
        }
        return ch;
    }

    /**
     * If in xmode parse past whitespace and comments.
     */
    private int parsePastWhitespace(int ch) {
        while (ASCII.isSpace(ch) || ch == '#') {
            while (ASCII.isSpace(ch))
                ch = temp[cursor++];
            if (ch == '#')
                ch = parsePastLine();
        }
        return ch;
    }

    /**
     * xmode parse past comment to end of line.
     */
    private int parsePastLine() {
        int ch = temp[cursor++];
        while (ch != 0 && !isLineSeparator(ch))
            ch = temp[cursor++];
        return ch;
    }

    /**
     * xmode peek past comment to end of line.
     */
    private int peekPastLine() {
        int ch = temp[++cursor];
        while (ch != 0 && !isLineSeparator(ch))
            ch = temp[++cursor];
        return ch;
    }

    /**
     * Determines if character is a line separator in the current mode
     */
    private boolean isLineSeparator(int ch) {
        if (has(UNIX_LINES)) {
            return ch == '\n';
        } else {
            return (ch == '\n' ||
                    ch == '\r' ||
                    (ch|1) == '\u2029' ||
                    ch == '\u0085');
        }
    }

    /**
     * Read the character after the next one, and advance the cursor by two.
     */
    private int skip() {
        int i = cursor;
        int ch = temp[i+1];
        cursor = i + 2;
        return ch;
    }

    /**
     * Unread one next character, and retreat cursor by one.
     */
    private void unread() {
        cursor--;
    }

    /**
     * Internal method used for handling all syntax errors. The pattern is
     * displayed with a pointer to aid in locating the syntax error.
     */
    private PatternSyntaxException error(String s) {
	return new PatternSyntaxException(s, normalizedPattern,  cursor - 1);
    }

    /**
     * Determines if there is any supplementary character or unpaired
     * surrogate in the specified range.
     */
    private boolean findSupplementary(int start, int end) {
	for (int i = start; i < end; i++) {
	    if (isSupplementary(temp[i]))
		return true;
	}
	return false;
    }

    /**
     * Determines if the specified code point is a supplementary
     * character or unpaired surrogate.
     */
    private static final boolean isSupplementary(int ch) {
	return ch >= Character.MIN_SUPPLEMENTARY_CODE_POINT || isSurrogate(ch);
    }

    /**
     *  The following methods handle the main parsing. They are sorted
     *  according to their precedence order, the lowest one first.
     */

    /**
     * The expression is parsed with branch nodes added for alternations.
     * This may be called recursively to parse sub expressions that may
     * contain alternations.
     */
    private Node expr(Node end) {
        Node prev = null;
        Node firstTail = null;
        Node branchConn = null;

        for (;;) {
            Node node = sequence(end);
            Node nodeTail = root;      //double return
            if (prev == null) {
                prev = node;
                firstTail = nodeTail;
            } else {
	        // Branch
	        if (branchConn == null) {
                    branchConn = new BranchConn();
                    branchConn.next = end;
                }  
                if (node == end) {
                    // if the node returned from sequence() is "end"
		    // we have an empty expr, set a null atom into
		    // the branch to indicate to go "next" directly.
		    node = null;
                } else {
		    // the "tail.next" of each atom goes to branchConn
                    nodeTail.next = branchConn;
                }
	        if (prev instanceof Branch) {
                    ((Branch)prev).add(node);
                } else {
		    if (prev == end) {
                        prev = null;
                    } else {
                        // replace the "end" with "branchConn" at its tail.next
                        // when put the "prev" into the branch as the first atom.
                        firstTail.next = branchConn;
                    }
                    prev = new Branch(prev, node, branchConn);
                }
            }
            if (peek() != '|') {
                return prev;
            }
            next();
        }
    }

    /**
     * Parsing of sequences between alternations.
     */
    private Node sequence(Node end) {
        Node head = null;
        Node tail = null;
        Node node = null;
    LOOP:
        for (;;) {
            int ch = peek();
            switch (ch) {
            case '(':
                // Because group handles its own closure,
                // we need to treat it differently
                node = group0();
                // Check for comment or flag group
                if (node == null)
                    continue;
                if (head == null)
                    head = node;
                else
                    tail.next = node;
                // Double return: Tail was returned in root
                tail = root;
                continue;
            case '[':
                node = clazz(true);
                break;
            case '\\':
                ch = nextEscaped();
                if (ch == 'p' || ch == 'P') {
                    boolean oneLetter = true;
		    boolean comp = (ch == 'P');
                    ch = next(); // Consume { if present
                    if (ch != '{') {
                        unread();
                    } else {
                        oneLetter = false;
                    }
		    node = family(oneLetter).maybeComplement(comp);
                } else {
                    unread();
                    node = atom();
                }
                break;
            case '^':
                next();
                if (has(MULTILINE)) {
                    if (has(UNIX_LINES))
                        node = new UnixCaret();
                    else
                        node = new Caret();
                } else {
                    node = new Begin();
                }
                break;
            case '$':
                next();
                if (has(UNIX_LINES))
                    node = new UnixDollar(has(MULTILINE));
                else
                    node = new Dollar(has(MULTILINE));
                break;
            case '.':
                next();
                if (has(DOTALL)) {
                    node = new All();
                } else {
                    if (has(UNIX_LINES))
                        node = new UnixDot();
                    else {
                        node = new Dot();
                    }
                }
                break;
            case '|':
            case ')':
                break LOOP;
            case ']': // Now interpreting dangling ] and } as literals
            case '}':
                node = atom();
                break;
            case '?':
            case '*':
            case '+':
                next();
                throw error("Dangling meta character '" + ((char)ch) + "'");
            case 0:
                if (cursor >= patternLength) {
                    break LOOP;
                }
                // Fall through
            default:
                node = atom();
                break;
            }

            node = closure(node);

            if (head == null) {
                head = tail = node;
            } else {
                tail.next = node;
                tail = node;
            }
        }
        if (head == null) {
            return end;
        }
        tail.next = end;
        root = tail;      //double return
        return head;
    }

    /**
     * Parse and add a new Single or Slice.
     */
    private Node atom() {
        int first = 0;
        int prev = -1;
	boolean hasSupplementary = false;
        int ch = peek();
        for (;;) {
            switch (ch) {
            case '*':
            case '+':
            case '?':
            case '{':
                if (first > 1) {
                    cursor = prev;    // Unwind one character
                    first--;
                }
                break;
            case '$':
            case '.':
            case '^':
            case '(':
            case '[':
            case '|':
            case ')':
                break;
            case '\\':
                ch = nextEscaped();
                if (ch == 'p' || ch == 'P') { // Property
                    if (first > 0) { // Slice is waiting; handle it first
                        unread();
                        break;
                    } else { // No slice; just return the family node
			boolean comp = (ch == 'P');
			boolean oneLetter = true;
			ch = next(); // Consume { if present
			if (ch != '{')
			    unread();
			else
			    oneLetter = false;
			return family(oneLetter).maybeComplement(comp);
                    }
                }
                unread();
                prev = cursor;
                ch = escape(false, first == 0);
                if (ch >= 0) {
                    append(ch, first);
                    first++;
		    if (isSupplementary(ch)) {
			hasSupplementary = true;
		    }
                    ch = peek();
                    continue;
                } else if (first == 0) {
                    return root;
                }
                // Unwind meta escape sequence
                cursor = prev;
                break;
            case 0:
                if (cursor >= patternLength) {
                    break;
                }
                // Fall through
            default:
                prev = cursor;
                append(ch, first);
                first++;
		if (isSupplementary(ch)) {
		    hasSupplementary = true;
		}
                ch = next();
                continue;
            }
            break;
        }
        if (first == 1) {
            return newSingle(buffer[0]);
        } else {
            return newSlice(buffer, first, hasSupplementary);
        }
    }

    private void append(int ch, int len) {
        if (len >= buffer.length) {
            int[] tmp = new int[len+len];
            System.arraycopy(buffer, 0, tmp, 0, len);
            buffer = tmp;
        }
        buffer[len] = ch;
    }

    /**
     * Parses a backref greedily, taking as many numbers as it
     * can. The first digit is always treated as a backref, but
     * multi digit numbers are only treated as a backref if at
     * least that many backrefs exist at this point in the regex.
     */
    private Node ref(int refNum) {
        boolean done = false;
        while(!done) {
            int ch = peek();
            switch(ch) {
	    case '0':
	    case '1':
	    case '2':
	    case '3':
	    case '4':
	    case '5':
	    case '6':
	    case '7':
	    case '8':
	    case '9':
		int newRefNum = (refNum * 10) + (ch - '0');
		// Add another number if it doesn't make a group
		// that doesn't exist
		if (capturingGroupCount - 1 < newRefNum) {
		    done = true;
		    break;
		}
		refNum = newRefNum;
		read();
		break;
	    default:
		done = true;
		break;
            }
        }
        if (has(CASE_INSENSITIVE))
            return new CIBackRef(refNum, has(UNICODE_CASE));
        else
            return new BackRef(refNum);
    }

    /**
     * Parses an escape sequence to determine the actual value that needs
     * to be matched.
     * If -1 is returned and create was true a new object was added to the tree
     * to handle the escape sequence.
     * If the returned value is greater than zero, it is the value that
     * matches the escape sequence.
     */
    private int escape(boolean inclass, boolean create) {
        int ch = skip();
        switch (ch) {
	case '0':
	    return o();
	case '1':
	case '2':
	case '3':
	case '4':
	case '5':
	case '6':
	case '7':
	case '8':
	case '9':
	    if (inclass) break;
	    if (create) {
		root = ref((ch - '0'));
	    }
	    return -1;
	case 'A':
	    if (inclass) break;
	    if (create) root = new Begin();
	    return -1;
	case 'B':
	    if (inclass) break;
	    if (create) root = new Bound(Bound.NONE);
	    return -1;
	case 'C':
	    break;
	case 'D':
	    if (create) root = new Ctype(ASCII.DIGIT).complement();
	    return -1;
	case 'E':
	case 'F':
	    break;
	case 'G':
	    if (inclass) break;
	    if (create) root = new LastMatch();
	    return -1;
	case 'H':
	case 'I':
	case 'J':
	case 'K':
	case 'L':
	case 'M':
	case 'N':
	case 'O':
	case 'P':
	case 'Q':
	case 'R':
	    break;
	case 'S':
	    if (create) root = new Ctype(ASCII.SPACE).complement();
	    return -1;
	case 'T':
	case 'U':
	case 'V':
	    break;
	case 'W':
	    if (create) root = new Ctype(ASCII.WORD).complement();
	    return -1;
	case 'X':
	case 'Y':
	    break;
	case 'Z':
	    if (inclass) break;
	    if (create) {
		if (has(UNIX_LINES))
		    root = new UnixDollar(false);
		else
		    root = new Dollar(false);
	    }
	    return -1;
	case 'a':
	    return '\007';
	case 'b':
	    if (inclass) break;
	    if (create) root = new Bound(Bound.BOTH);
	    return -1;
	case 'c':
	    return c();
	case 'd':
	    if (create) root = new Ctype(ASCII.DIGIT);
	    return -1;
	case 'e':
	    return '\033';
	case 'f':
	    return '\f';
	case 'g':
	case 'h':
	case 'i':
	case 'j':
	case 'k':
	case 'l':
	case 'm':
	    break;
	case 'n':
	    return '\n';
	case 'o':
	case 'p':
	case 'q':
	    break;
	case 'r':
	    return '\r';
	case 's':
	    if (create) root = new Ctype(ASCII.SPACE);
	    return -1;
	case 't':
	    return '\t';
	case 'u':
	    return u();
	case 'v':
	    return '\013';
	case 'w':
	    if (create) root = new Ctype(ASCII.WORD);
	    return -1;
	case 'x':
	    return x();
	case 'y':
	    break;
	case 'z':
	    if (inclass) break;
	    if (create) root = new End();
	    return -1;
	default:
	    return ch;
        }
        throw error("Illegal/unsupported escape sequence");
    }

    /**
     * Parse a character class, and return the node that matches it.
     *
     * Consumes a ] on the way out if consume is true. Usually consume
     * is true except for the case of [abc&&def] where def is a separate
     * right hand node with "understood" brackets.
     */
    private CharProperty clazz(boolean consume) {
        CharProperty prev = null;
        CharProperty node = null;
        BitClass bits = new BitClass();
        boolean include = true;
        boolean firstInClass = true;
        int ch = next();
        for (;;) {
            switch (ch) {
                case '^':
                    // Negates if first char in a class, otherwise literal
                    if (firstInClass) {
                        if (temp[cursor-1] != '[')
                            break;
                        ch = next();
                        include = !include;
                        continue;
                    } else {
                        // ^ not first in class, treat as literal
                        break;
                    }
                case '[':
                    firstInClass = false;
                    node = clazz(true);
                    if (prev == null)
                        prev = node;
                    else
                        prev = union(prev, node);
                    ch = peek();
                    continue;
                case '&':
                    firstInClass = false;
                    ch = next();
                    if (ch == '&') {
                        ch = next();
                        CharProperty rightNode = null;
                        while (ch != ']' && ch != '&') {
                            if (ch == '[') {
                                if (rightNode == null)
                                    rightNode = clazz(true);
                                else
                                    rightNode = union(rightNode, clazz(true));
                            } else { // abc&&def
                                unread();
                                rightNode = clazz(false);
                            }
                            ch = peek();
                        }
                        if (rightNode != null)
                            node = rightNode;
                        if (prev == null) {
                            if (rightNode == null)
                                throw error("Bad class syntax");
                            else
                                prev = rightNode;
                        } else {
                            prev = intersection(prev, node);
                        }
                    } else {
                        // treat as a literal &
                        unread();
                        break;
                    }
                    continue;
                case 0:
                    firstInClass = false;
                    if (cursor >= patternLength)
                        throw error("Unclosed character class");
                    break;
                case ']':
                    firstInClass = false;
                    if (prev != null) {
                        if (consume)
                            next();
                        return prev;
                    }
                    break;
                default:
                    firstInClass = false;
                    break;
            }
            node = range(bits);
            if (include) {
                if (prev == null) {
                    prev = node;
                } else {
                    if (prev != node)
                        prev = union(prev, node);
                }
            } else {
                if (prev == null) {
                    prev = node.complement();
                } else {
                    if (prev != node)
                        prev = setDifference(prev, node);
                }
            }
            ch = peek();
        }
    }

    private CharProperty bitsOrSingle(BitClass bits, int ch) {
	/* Bits can only handle codepoints in [u+0000-u+00ff] range.
	   Use "single" node instead of bits when dealing with unicode
	   case folding for codepoints listed below.
	   (1)Uppercase out of range: u+00ff, u+00b5 
	      toUpperCase(u+00ff) -> u+0178
	      toUpperCase(u+00b5) -> u+039c
           (2)LatinSmallLetterLongS u+17f
	      toUpperCase(u+017f) -> u+0053
	   (3)LatinSmallLetterDotlessI u+131
	      toUpperCase(u+0131) -> u+0049
	   (4)LatinCapitalLetterIWithDotAbove u+0130
	      toLowerCase(u+0130) -> u+0069
	   (5)KelvinSign u+212a
	      toLowerCase(u+212a) ==> u+006B
	   (6)AngstromSign u+212b
	      toLowerCase(u+212b) ==> u+00e5
	*/
	int d;
	if (ch < 256 &&
	    !(has(CASE_INSENSITIVE) && has(UNICODE_CASE) &&
	      (ch == 0xff || ch == 0xb5 ||
	       ch == 0x49 || ch == 0x69 ||  //I and i
	       ch == 0x53 || ch == 0x73 ||  //S and s
	       ch == 0x4b || ch == 0x6b ||  //K and k
	       ch == 0xc5 || ch == 0xe5)))  //A+ring
	    return bits.add(ch, flags());
	return newSingle(ch);
    }

    /**
     * Parse a single character or a character range in a character class
     * and return its representative node.
     */
    private CharProperty range(BitClass bits) {
        int ch = peek();
        if (ch == '\\') {
            ch = nextEscaped();
            if (ch == 'p' || ch == 'P') { // A property
                boolean comp = (ch == 'P');
                boolean oneLetter = true;
                // Consume { if present
                ch = next();
                if (ch != '{')
                    unread();
                else
                    oneLetter = false;
                return family(oneLetter).maybeComplement(comp);
            } else { // ordinary escape
                unread();
                ch = escape(true, true);
                if (ch == -1)
		    return (CharProperty) root;
            }
        } else {
            ch = single();
        }
        if (ch >= 0) {
            if (peek() == '-') {
                int endRange = temp[cursor+1];
                if (endRange == '[') {
		    return bitsOrSingle(bits, ch);
                }
                if (endRange != ']') {
                    next();
                    int m = single();
                    if (m < ch)
                        throw error("Illegal character range");
                    if (has(CASE_INSENSITIVE))
                        return caseInsensitiveRangeFor(ch, m);
                    else
                        return rangeFor(ch, m);
                }
            }
	    return bitsOrSingle(bits, ch);
        }
        throw error("Unexpected character '"+((char)ch)+"'");
    }

    private int single() {
        int ch = peek();
        switch (ch) {
        case '\\':
            return escape(true, false);
        default:
            next();
            return ch;
        }
    }

    /**
     * Parses a Unicode character family and returns its representative node.
     */
    private CharProperty family(boolean singleLetter) {
        next();
        String name;

        if (singleLetter) {
	    int c = temp[cursor];
	    if (!Character.isSupplementaryCodePoint(c)) {
		name = String.valueOf((char)c);
	    } else {
		name = new String(temp, cursor, 1);
	    }
            read();
        } else {
            int i = cursor;
            mark('}');
            while(read() != '}') {
            }
            mark('\000');
            int j = cursor;
            if (j > patternLength)
                throw error("Unclosed character family");
            if (i + 1 >= j)
                throw error("Empty character family");
            name = new String(temp, i, j-i-1);
        }

        if (name.startsWith("In")) {
            return unicodeBlockPropertyFor(name.substring(2));
        } else {
	    if (name.startsWith("Is"))
		name = name.substring(2);
	    return charPropertyNodeFor(name);
	}
    }

    /**
     * Returns a CharProperty matching all characters in a UnicodeBlock.
     */
    private CharProperty unicodeBlockPropertyFor(String name) {
	final Character.UnicodeBlock block;
        try {
            block = Character.UnicodeBlock.forName(name);
        } catch (IllegalArgumentException iae) {
            throw error("Unknown character block name {" + name + "}");
        }
	return new CharProperty() {
		boolean isSatisfiedBy(int ch) {
		    return block == Character.UnicodeBlock.of(ch);}};
    }

    /**
     * Returns a CharProperty matching all characters in a named property.
     */
    private CharProperty charPropertyNodeFor(String name) {
	CharProperty p = CharPropertyNames.charPropertyFor(name);
        if (p == null)
	    throw error("Unknown character property name {" + name + "}");
	return p;
    }

    /**
     * Parses a group and returns the head node of a set of nodes that process
     * the group. Sometimes a double return system is used where the tail is
     * returned in root.
     */
    private Node group0() {
        boolean capturingGroup = false;
        Node head = null;
        Node tail = null;
        int save = flags;
        root = null;
        int ch = next();
        if (ch == '?') {
            ch = skip();
            switch (ch) {
            case ':':   //  (?:xxx) pure group
                head = createGroup(true);
                tail = root;
                head.next = expr(tail);
                break;
            case '=':   // (?=xxx) and (?!xxx) lookahead
            case '!':
                head = createGroup(true);
                tail = root;
                head.next = expr(tail);
                if (ch == '=') {
                    head = tail = new Pos(head);
                } else {
                    head = tail = new Neg(head);
                }
                break;
            case '>':   // (?>xxx)  independent group
                head = createGroup(true);
                tail = root;
                head.next = expr(tail);
                head = tail = new Ques(head, INDEPENDENT);
                break;
            case '<':   // (?<xxx)  look behind
                ch = read();
		int start = cursor;
                head = createGroup(true);
                tail = root;
                head.next = expr(tail);
                tail.next = lookbehindEnd;
                TreeInfo info = new TreeInfo();
                head.study(info);
                if (info.maxValid == false) {
                    throw error("Look-behind group does not have "
				+ "an obvious maximum length");
                }
		boolean hasSupplementary = findSupplementary(start, patternLength);
                if (ch == '=') {
                    head = tail = (hasSupplementary ?
				   new BehindS(head, info.maxLength,
					       info.minLength) :
				   new Behind(head, info.maxLength,
					      info.minLength));
                } else if (ch == '!') {
                    head = tail = (hasSupplementary ?
				   new NotBehindS(head, info.maxLength,
						  info.minLength) :
				   new NotBehind(head, info.maxLength,
						 info.minLength));
                } else {
                    throw error("Unknown look-behind group");
                }
                break;
            case '$':
            case '@':
		throw error("Unknown group type");
            default:    // (?xxx:) inlined match flags
                unread();
                addFlag();
                ch = read();
                if (ch == ')') {
                    return null;    // Inline modifier only
                }
                if (ch != ':') {
                    throw error("Unknown inline modifier");
                }
                head = createGroup(true);
                tail = root;
                head.next = expr(tail);
                break;
            }
        } else { // (xxx) a regular group
            capturingGroup = true;
            head = createGroup(false);
            tail = root;
            head.next = expr(tail);
        }

        accept(')', "Unclosed group");
        flags = save;

        // Check for quantifiers
        Node node = closure(head);
        if (node == head) { // No closure
            root = tail;
            return node;    // Dual return
        }
        if (head == tail) { // Zero length assertion
            root = node;
            return node;    // Dual return
        }

        if (node instanceof Ques) {
            Ques ques = (Ques) node;
            if (ques.type == POSSESSIVE) {
                root = node;
                return node;
            }
            tail.next = new BranchConn();
            tail = tail.next;
            if (ques.type == GREEDY) {
                head = new Branch(head, null, tail);
            } else { // Reluctant quantifier
                head = new Branch(null, head, tail);
            }
            root = tail;
            return head;
        } else if (node instanceof Curly) {
            Curly curly = (Curly) node;
            if (curly.type == POSSESSIVE) {
                root = node;
                return node;
            }
            // Discover if the group is deterministic
            TreeInfo info = new TreeInfo();
            if (head.study(info)) { // Deterministic
                GroupTail temp = (GroupTail) tail;
                head = root = new GroupCurly(head.next, curly.cmin,
                                   curly.cmax, curly.type,
                                   ((GroupTail)tail).localIndex,
                                   ((GroupTail)tail).groupIndex,
                                             capturingGroup);
                return head;
            } else { // Non-deterministic
                int temp = ((GroupHead) head).localIndex;
                Loop loop;
                if (curly.type == GREEDY)
                    loop = new Loop(this.localCount, temp);
                else  // Reluctant Curly
                    loop = new LazyLoop(this.localCount, temp);
                Prolog prolog = new Prolog(loop);
                this.localCount += 1;
                loop.cmin = curly.cmin;
                loop.cmax = curly.cmax;
                loop.body = head;
                tail.next = loop;
                root = loop;
                return prolog; // Dual return
            }
        }
        throw error("Internal logic error");
    }

    /**
     * Create group head and tail nodes using double return. If the group is
     * created with anonymous true then it is a pure group and should not
     * affect group counting.
     */
    private Node createGroup(boolean anonymous) {
        int localIndex = localCount++;
        int groupIndex = 0;
        if (!anonymous)
            groupIndex = capturingGroupCount++;
        GroupHead head = new GroupHead(localIndex);
        root = new GroupTail(localIndex, groupIndex);
        if (!anonymous && groupIndex < 10)
            groupNodes[groupIndex] = head;
        return head;
    }

    /**
     * Parses inlined match flags and set them appropriately.
     */
    private void addFlag() {
        int ch = peek();
        for (;;) {
            switch (ch) {
            case 'i':
                flags |= CASE_INSENSITIVE;
                break;
            case 'm':
                flags |= MULTILINE;
                break;
            case 's':
                flags |= DOTALL;
                break;
            case 'd':
                flags |= UNIX_LINES;
                break;
            case 'u':
                flags |= UNICODE_CASE;
                break;
            case 'c':
                flags |= CANON_EQ;
                break;
            case 'x':
                flags |= COMMENTS;
                break;
            case '-': // subFlag then fall through
                ch = next();
                subFlag();
            default:
                return;
            }
            ch = next();
        }
    }

    /**
     * Parses the second part of inlined match flags and turns off
     * flags appropriately.
     */
    private void subFlag() {
        int ch = peek();
        for (;;) {
            switch (ch) {
            case 'i':
                flags &= ~CASE_INSENSITIVE;
                break;
            case 'm':
                flags &= ~MULTILINE;
                break;
            case 's':
                flags &= ~DOTALL;
                break;
            case 'd':
                flags &= ~UNIX_LINES;
                break;
            case 'u':
                flags &= ~UNICODE_CASE;
                break;
            case 'c':
                flags &= ~CANON_EQ;
                break;
            case 'x':
                flags &= ~COMMENTS;
                break;
            default:
                return;
            }
            ch = next();
        }
    }

    static final int MAX_REPS   = 0x7FFFFFFF;

    static final int GREEDY     = 0;

    static final int LAZY       = 1;

    static final int POSSESSIVE = 2;

    static final int INDEPENDENT = 3;

    /**
     * Processes repetition. If the next character peeked is a quantifier
     * then new nodes must be appended to handle the repetition.
     * Prev could be a single or a group, so it could be a chain of nodes.
     */
    private Node closure(Node prev) {
        Node atom;
        int ch = peek();
        switch (ch) {
        case '?':
            ch = next();
            if (ch == '?') {
                next();
                return new Ques(prev, LAZY);
            } else if (ch == '+') {
                next();
                return new Ques(prev, POSSESSIVE);
            }
            return new Ques(prev, GREEDY);
        case '*':
            ch = next();
            if (ch == '?') {
                next();
                return new Curly(prev, 0, MAX_REPS, LAZY);
            } else if (ch == '+') {
                next();
                return new Curly(prev, 0, MAX_REPS, POSSESSIVE);
            }
            return new Curly(prev, 0, MAX_REPS, GREEDY);
        case '+':
            ch = next();
            if (ch == '?') {
                next();
                return new Curly(prev, 1, MAX_REPS, LAZY);
            } else if (ch == '+') {
                next();
                return new Curly(prev, 1, MAX_REPS, POSSESSIVE);
            }
            return new Curly(prev, 1, MAX_REPS, GREEDY);
        case '{':
            ch = temp[cursor+1];
            if (ASCII.isDigit(ch)) {
                skip();
                int cmin = 0;
                do {
                    cmin = cmin * 10 + (ch - '0');
                } while (ASCII.isDigit(ch = read()));
                int cmax = cmin;
                if (ch == ',') {
                    ch = read();
                    cmax = MAX_REPS;
                    if (ch != '}') {
                        cmax = 0;
                        while (ASCII.isDigit(ch)) {
                            cmax = cmax * 10 + (ch - '0');
                            ch = read();
                        }
                    }
                }
                if (ch != '}')
                    throw error("Unclosed counted closure");
                if (((cmin) | (cmax) | (cmax - cmin)) < 0)
                    throw error("Illegal repetition range");
                Curly curly;
                ch = peek();
                if (ch == '?') {
                    next();
                    curly = new Curly(prev, cmin, cmax, LAZY);
                } else if (ch == '+') {
                    next();
                    curly = new Curly(prev, cmin, cmax, POSSESSIVE);
                } else {
                    curly = new Curly(prev, cmin, cmax, GREEDY);
                }
                return curly;
            } else {
                throw error("Illegal repetition");
            }
        default:
            return prev;
        }
    }

    /**
     *  Utility method for parsing control escape sequences.
     */
    private int c() {
        if (cursor < patternLength) {
            return read() ^ 64;
        }
        throw error("Illegal control escape sequence");
    }

    /**
     *  Utility method for parsing octal escape sequences.
     */
    private int o() {
        int n = read();
        if (((n-'0')|('7'-n)) >= 0) {
            int m = read();
            if (((m-'0')|('7'-m)) >= 0) {
                int o = read();
                if ((((o-'0')|('7'-o)) >= 0) && (((n-'0')|('3'-n)) >= 0)) {
                    return (n - '0') * 64 + (m - '0') * 8 + (o - '0');
                }
                unread();
                return (n - '0') * 8 + (m - '0');
            }
            unread();
            return (n - '0');
        }
        throw error("Illegal octal escape sequence");
    }

    /**
     *  Utility method for parsing hexadecimal escape sequences.
     */
    private int x() {
        int n = read();
        if (ASCII.isHexDigit(n)) {
            int m = read();
            if (ASCII.isHexDigit(m)) {
                return ASCII.toDigit(n) * 16 + ASCII.toDigit(m);
            }
        }
        throw error("Illegal hexadecimal escape sequence");
    }

    /**
     *  Utility method for parsing unicode escape sequences.
     */
    private int u() {
        int n = 0;
        for (int i = 0; i < 4; i++) {
            int ch = read();
            if (!ASCII.isHexDigit(ch)) {
                throw error("Illegal Unicode escape sequence");
            }
            n = n * 16 + ASCII.toDigit(ch);
        }
        return n;
    }

    //
    // Utility methods for code point support
    //

    /**
     * Tests a surrogate value.
     */
    private static final boolean isSurrogate(int c) {
	return c >= Character.MIN_HIGH_SURROGATE && c <= Character.MAX_LOW_SURROGATE;
    }

    private static final int countChars(CharSequence seq, int index,
					int lengthInCodePoints) {
	// optimization
	if (lengthInCodePoints == 1 && !Character.isHighSurrogate(seq.charAt(index))) {
	    assert (index >= 0 && index < seq.length());
	    return 1;
	}
	int length = seq.length();
	int x = index;
	if (lengthInCodePoints >= 0) {
	    assert (index >= 0 && index < length);
	    for (int i = 0; x < length && i < lengthInCodePoints; i++) {
		if (Character.isHighSurrogate(seq.charAt(x++))) {
		    if (x < length && Character.isLowSurrogate(seq.charAt(x))) {
			x++;
		    }
		}
	    }
	    return x - index;
	}

	assert (index >= 0 && index <= length);
	if (index == 0) {
	    return 0;
	}
	int len = -lengthInCodePoints;
	for (int i = 0; x > 0 && i < len; i++) {
	    if (Character.isLowSurrogate(seq.charAt(--x))) {
		if (x > 0 && Character.isHighSurrogate(seq.charAt(x-1))) {
		    x--;
		}
	    }
	}
	return index - x;
    }

    private static final int countCodePoints(CharSequence seq) {
	int length = seq.length();
	int n = 0;
	for (int i = 0; i < length; ) {
	    n++;
	    if (Character.isHighSurrogate(seq.charAt(i++))) {
		if (i < length && Character.isLowSurrogate(seq.charAt(i))) {
		    i++;
		}
	    }
	}
	return n;
    }

    /**
     *  Creates a bit vector for matching Latin-1 values. A normal BitClass
     *  never matches values above Latin-1, and a complemented BitClass always
     *  matches values above Latin-1.
     */
    private static final class BitClass extends BmpCharProperty {
	final boolean[] bits;
	BitClass() { bits = new boolean[256]; }
        private BitClass(boolean[] bits) { this.bits = bits; }
        BitClass add(int c, int flags) {
	    assert c >= 0 && c <= 255;
            if ((flags & CASE_INSENSITIVE) != 0) {
                if (ASCII.isAscii(c)) {
		    bits[ASCII.toUpper(c)] = true;
		    bits[ASCII.toLower(c)] = true;
		} else if ((flags & UNICODE_CASE) != 0) {
		    bits[Character.toLowerCase(c)] = true;
		    bits[Character.toUpperCase(c)] = true;
		}
	    }
	    bits[c] = true;
	    return this;
        }
	boolean isSatisfiedBy(int ch) {
	    return ch < 256 && bits[ch];
        }
    }

    /**
     *  Returns a suitably optimized, single character matcher.
     */
    private CharProperty newSingle(final int ch) {
	if (has(CASE_INSENSITIVE)) {
	    int lower, upper;
	    if (has(UNICODE_CASE)) {
		upper = Character.toUpperCase(ch);
		lower = Character.toLowerCase(upper);
		if (upper != lower)
		    return new SingleU(lower);
	    } else if (ASCII.isAscii(ch)) {
		lower = ASCII.toLower(ch);
		upper = ASCII.toUpper(ch);
		if (lower != upper)
		    return new SingleI(lower, upper);
	    }
	}
	if (isSupplementary(ch))
	    return new SingleS(ch);    // Match a given Unicode character
	return new Single(ch);         // Match a given BMP character
    }

    /**
     *  Utility method for creating a string slice matcher.
     */
    private Node newSlice(int[] buf, int count, boolean hasSupplementary) {
        int[] tmp = new int[count];
        if (has(CASE_INSENSITIVE)) {
	    if (has(UNICODE_CASE)) {
		for (int i = 0; i < count; i++) {
		    tmp[i] = Character.toLowerCase(
			         Character.toUpperCase(buf[i]));
		}
		return hasSupplementary? new SliceUS(tmp) : new SliceU(tmp);
	    }
	    for (int i = 0; i < count; i++) {
		tmp[i] = ASCII.toLower(buf[i]);
	    }
	    return hasSupplementary? new SliceIS(tmp) : new SliceI(tmp);
	}
	for (int i = 0; i < count; i++) {
	    tmp[i] = buf[i];
	}
	return hasSupplementary ? new SliceS(tmp) : new Slice(tmp);
    }

    /**
     * The following classes are the building components of the object
     * tree that represents a compiled regular expression. The object tree
     * is made of individual elements that handle constructs in the Pattern.
     * Each type of object knows how to match its equivalent construct with
     * the match() method.
     */

    /**
     * Base class for all node classes. Subclasses should override the match()
     * method as appropriate. This class is an accepting node, so its match()
     * always returns true.
     */
    static class Node extends Object {
        Node next;
        Node() {
            next = Pattern.accept;
        }
        /**
         * This method implements the classic accept node.
         */
        boolean match(Matcher matcher, int i, CharSequence seq) {
            matcher.last = i;
            matcher.groups[0] = matcher.first;
            matcher.groups[1] = matcher.last;
            return true;
        }
        /**
         * This method is good for all zero length assertions.
         */
        boolean study(TreeInfo info) {
            if (next != null) {
                return next.study(info);
            } else {
                return info.deterministic;
            }
        }
    }

    static class LastNode extends Node {
        /**
         * This method implements the classic accept node with
         * the addition of a check to see if the match occurred
         * using all of the input.
         */
        boolean match(Matcher matcher, int i, CharSequence seq) {
            if (matcher.acceptMode == Matcher.ENDANCHOR && i != matcher.to)
                return false;
            matcher.last = i;
            matcher.groups[0] = matcher.first;
            matcher.groups[1] = matcher.last;
            return true;
        }
    }

    /**
     * Used for REs that can start anywhere within the input string.
     * This basically tries to match repeatedly at each spot in the
     * input string, moving forward after each try. An anchored search
     * or a BnM will bypass this node completely.
     */
    static class Start extends Node {
        int minLength;
        Start(Node node) {
            this.next = node;
            TreeInfo info = new TreeInfo();
            next.study(info);
            minLength = info.minLength;
        }
        boolean match(Matcher matcher, int i, CharSequence seq) {
            if (i > matcher.to - minLength) {
                matcher.hitEnd = true;
                return false;
            }
            boolean ret = false;
            int guard = matcher.to - minLength;
            for (; i <= guard; i++) {
                if (ret = next.match(matcher, i, seq))
                    break;
                if (i == guard)
                    matcher.hitEnd = true;
            }
            if (ret) {
                matcher.first = i;
                matcher.groups[0] = matcher.first;
                matcher.groups[1] = matcher.last;
            }
            return ret;
        }
        boolean study(TreeInfo info) {
            next.study(info);
            info.maxValid = false;
            info.deterministic = false;
            return false;
        }
    }

    /*
     * StartS supports supplementary characters, including unpaired surrogates.
     */
    static final class StartS extends Start {
        StartS(Node node) {
	    super(node);
        }
        boolean match(Matcher matcher, int i, CharSequence seq) {
            if (i > matcher.to - minLength) {
                matcher.hitEnd = true;
                return false;
            }
            boolean ret = false;
            int guard = matcher.to - minLength;
            while (i <= guard) {
                if ((ret = next.match(matcher, i, seq)) || i == guard)
                    break;
		// Optimization to move to the next character. This is
		// faster than countChars(seq, i, 1).
		if (Character.isHighSurrogate(seq.charAt(i++))) {
		    if (i < seq.length() && Character.isLowSurrogate(seq.charAt(i))) {
			i++;
		    }
		}
                if (i == guard)
                    matcher.hitEnd = true;
            }
            if (ret) {
                matcher.first = i;
                matcher.groups[0] = matcher.first;
                matcher.groups[1] = matcher.last;
            }
            return ret;
        }
    }

    /**
     * Node to anchor at the beginning of input. This object implements the
     * match for a \A sequence, and the caret anchor will use this if not in
     * multiline mode.
     */
    static final class Begin extends Node {
        boolean match(Matcher matcher, int i, CharSequence seq) {
            int fromIndex = (matcher.anchoringBounds) ?
                matcher.from : 0;
            if (i == fromIndex && next.match(matcher, i, seq)) {
                matcher.first = i;
                matcher.groups[0] = i;
                matcher.groups[1] = matcher.last;
                return true;
            } else {
                return false;
            }
        }
    }

    /**
     * Node to anchor at the end of input. This is the absolute end, so this
     * should not match at the last newline before the end as $ will.
     */
    static final class End extends Node {
        boolean match(Matcher matcher, int i, CharSequence seq) {
            int endIndex = (matcher.anchoringBounds) ?
                matcher.to : matcher.getTextLength();
            if (i == endIndex) {
                matcher.hitEnd = true;
                return next.match(matcher, i, seq);
            }
            return false;
        }
    }

    /**
     * Node to anchor at the beginning of a line. This is essentially the
     * object to match for the multiline ^.
     */
    static final class Caret extends Node {
        boolean match(Matcher matcher, int i, CharSequence seq) {
            int startIndex = matcher.from;
            int endIndex = matcher.to;
            if (!matcher.anchoringBounds) {
                startIndex = 0;
                endIndex = matcher.getTextLength();
            }
            // Perl does not match ^ at end of input even after newline
            if (i == endIndex) {
                matcher.hitEnd = true;
                return false;
            }
            if (i > startIndex) {
                char ch = seq.charAt(i-1);
                if (ch != '\n' && ch != '\r'
                    && (ch|1) != '\u2029'
                    && ch != '\u0085' ) {
                    return false;
                }
                // Should treat /r/n as one newline
                if (ch == '\r' && seq.charAt(i) == '\n')
                    return false;
            }
            return next.match(matcher, i, seq);
        }
    }

    /**
     * Node to anchor at the beginning of a line when in unixdot mode.
     */
    static final class UnixCaret extends Node {
        boolean match(Matcher matcher, int i, CharSequence seq) {
            int startIndex = matcher.from;
            int endIndex = matcher.to;
            if (!matcher.anchoringBounds) {
                startIndex = 0;
                endIndex = matcher.getTextLength();
            }
            // Perl does not match ^ at end of input even after newline
            if (i == endIndex) {
                matcher.hitEnd = true;
                return false;
            }
            if (i > startIndex) {
                char ch = seq.charAt(i-1);
                if (ch != '\n') {
                    return false;
                }
            }
            return next.match(matcher, i, seq);
        }
    }

    /**
     * Node to match the location where the last match ended.
     * This is used for the \G construct.
     */
    static final class LastMatch extends Node {
        boolean match(Matcher matcher, int i, CharSequence seq) {
            if (i != matcher.oldLast)
                return false;
            return next.match(matcher, i, seq);
        }
    }

    /**
     * Node to anchor at the end of a line or the end of input based on the
     * multiline mode.
     *
     * When not in multiline mode, the $ can only match at the very end
     * of the input, unless the input ends in a line terminator in which
     * it matches right before the last line terminator.
     *
     * Note that \r\n is considered an atomic line terminator.
     *
     * Like ^ the $ operator matches at a position, it does not match the
     * line terminators themselves.
     */
    static final class Dollar extends Node {
        boolean multiline;
        Dollar(boolean mul) {
            multiline = mul;
        }
        boolean match(Matcher matcher, int i, CharSequence seq) {
            int endIndex = (matcher.anchoringBounds) ?
                matcher.to : matcher.getTextLength();
            if (!multiline) {
                if (i < endIndex - 2)
                    return false;
                if (i == endIndex - 2) {
                    char ch = seq.charAt(i);
                    if (ch != '\r')
                        return false;
                    ch = seq.charAt(i + 1);
                    if (ch != '\n')
                        return false;
                }
            }
            // Matches before any line terminator; also matches at the
            // end of input
            // Before line terminator:
            // If multiline, we match here no matter what
            // If not multiline, fall through so that the end
            // is marked as hit; this must be a /r/n or a /n
            // at the very end so the end was hit; more input
            // could make this not match here
            if (i < endIndex) {
                char ch = seq.charAt(i);
                 if (ch == '\n') {
                     // No match between \r\n
                     if (i > 0 && seq.charAt(i-1) == '\r')
                         return false;
                     if (multiline)
                         return next.match(matcher, i, seq);
                 } else if (ch == '\r' || ch == '\u0085' ||
                            (ch|1) == '\u2029') {
                     if (multiline)
                         return next.match(matcher, i, seq);
                 } else { // No line terminator, no match
                     return false;
                 }
            }
            // Matched at current end so hit end
            matcher.hitEnd = true;
            // If a $ matches because of end of input, then more input
            // could cause it to fail!
            matcher.requireEnd = true;
            return next.match(matcher, i, seq);
        }
        boolean study(TreeInfo info) {
            next.study(info);
            return info.deterministic;
        }
    }

    /**
     * Node to anchor at the end of a line or the end of input based on the
     * multiline mode when in unix lines mode.
     */
    static final class UnixDollar extends Node {
        boolean multiline;
        UnixDollar(boolean mul) {
            multiline = mul;
        }
        boolean match(Matcher matcher, int i, CharSequence seq) {
            int endIndex = (matcher.anchoringBounds) ?
                matcher.to : matcher.getTextLength();
            if (i < endIndex) {
                char ch = seq.charAt(i);
                if (ch == '\n') {
                    // If not multiline, then only possible to
                    // match at very end or one before end
                    if (multiline == false && i != endIndex - 1)
                        return false;
                    // If multiline return next.match without setting
                    // matcher.hitEnd
                    if (multiline)
                        return next.match(matcher, i, seq);
                } else {
                    return false;
                }
            }
            // Matching because at the end or 1 before the end;
            // more input could change this so set hitEnd
            matcher.hitEnd = true;
            // If a $ matches because of end of input, then more input
            // could cause it to fail!
            matcher.requireEnd = true;
            return next.match(matcher, i, seq);
        }
        boolean study(TreeInfo info) {
            next.study(info);
            return info.deterministic;
        }
    }

    /**
     * Abstract node class to match one character satisfying some
     * boolean property.
     */
    private static abstract class CharProperty extends Node {
	abstract boolean isSatisfiedBy(int ch);
	CharProperty complement() {
	    return new CharProperty() {
		    boolean isSatisfiedBy(int ch) {
			return ! CharProperty.this.isSatisfiedBy(ch);}};
	}
	CharProperty maybeComplement(boolean complement) {
	    return complement ? complement() : this;
	}
        boolean match(Matcher matcher, int i, CharSequence seq) {
	    if (i < matcher.to) {
		int ch = Character.codePointAt(seq, i);
		return isSatisfiedBy(ch)
		    && next.match(matcher, i+Character.charCount(ch), seq);
	    } else {
                matcher.hitEnd = true;
		return false;
            }
        }
        boolean study(TreeInfo info) {
            info.minLength++;
            info.maxLength++;
            return next.study(info);
	}
    }

    /**
     * Optimized version of CharProperty that works only for
     * properties never satisfied by Supplementary characters.
     */
    private static abstract class BmpCharProperty extends CharProperty {
	boolean match(Matcher matcher, int i, CharSequence seq) {
	    if (i < matcher.to) {
		return isSatisfiedBy(seq.charAt(i))
		    && next.match(matcher, i+1, seq);
	    } else {
                matcher.hitEnd = true;
		return false;
            }
        }
    }

    /**
     * Node class that matches a Supplementary Unicode character
     */
    static final class SingleS extends CharProperty {
        final int c;
        SingleS(int c) { this.c = c; }
	boolean isSatisfiedBy(int ch) {
	    return ch == c;
	}
    }

    /**
     * Optimization -- matches a given BMP character
     */
    static final class Single extends BmpCharProperty {
        final int c;
        Single(int c) { this.c = c; }
	boolean isSatisfiedBy(int ch) {
	    return ch == c;
	}
    }

    /**
     * Case insensitive matches a given BMP character
     */
    static final class SingleI extends BmpCharProperty {
        final int lower;
	final int upper;
        SingleI(int lower, int upper) {
	    this.lower = lower;
	    this.upper = upper;
	}
	boolean isSatisfiedBy(int ch) {
	    return ch == lower || ch == upper;
	}
    }

    /**
     * Unicode case insensitive matches a given Unicode character
     */
    static final class SingleU extends CharProperty {
        final int lower;
        SingleU(int lower) {
	    this.lower = lower;
	}
	boolean isSatisfiedBy(int ch) {
	    return lower == ch ||
		lower == Character.toLowerCase(Character.toUpperCase(ch));
	}
    }

    /**
     * Node class that matches a Unicode category.
     */
    static final class Category extends CharProperty {
        final int typeMask;
        Category(int typeMask) { this.typeMask = typeMask; }
	boolean isSatisfiedBy(int ch) {
	    return (typeMask & (1 << Character.getType(ch))) != 0;
	}
    }

    /**
     * Node class that matches a POSIX type.
     */
    static final class Ctype extends BmpCharProperty {
        final int ctype;
        Ctype(int ctype) { this.ctype = ctype; }
	boolean isSatisfiedBy(int ch) {
	    return ch < 128 && ASCII.isType(ch, ctype);
	}
    }

    /**
     * Base class for all Slice nodes
     */
    static class SliceNode extends Node {
        int[] buffer;
        SliceNode(int[] buf) {
            buffer = buf;
        }
        boolean study(TreeInfo info) {
            info.minLength += buffer.length;
            info.maxLength += buffer.length;
            return next.study(info);
        }
    }

    /**
     * Node class for a case sensitive/BMP-only sequence of literal
     * characters.
     */
    static final class Slice extends SliceNode {
        Slice(int[] buf) {
            super(buf);
        }
        boolean match(Matcher matcher, int i, CharSequence seq) {
            int[] buf = buffer;
            int len = buf.length;
            for (int j=0; j<len; j++) {
                if ((i+j) >= matcher.to) {
                    matcher.hitEnd = true;
                    return false;
                }
                if (buf[j] != seq.charAt(i+j))
                    return false;
            }
            return next.match(matcher, i+len, seq);
        }
    }

    /**
     * Node class for a case_insensitive/BMP-only sequence of literal
     * characters.
     */
    static class SliceI extends SliceNode {
        SliceI(int[] buf) {
            super(buf);
        }
        boolean match(Matcher matcher, int i, CharSequence seq) {
            int[] buf = buffer;
            int len = buf.length;
            for (int j=0; j<len; j++) {
                if ((i+j) >= matcher.to) {
                    matcher.hitEnd = true;
                    return false;
                }
		int c = seq.charAt(i+j);
                if (buf[j] != c &&
		    buf[j] != ASCII.toLower(c))
                    return false;
            }
            return next.match(matcher, i+len, seq);
        }
    }

    /**
     * Node class for a unicode_case_insensitive/BMP-only sequence of
     * literal characters. Uses unicode case folding.
     */
    static final class SliceU extends SliceNode {
        SliceU(int[] buf) {
	    super(buf);
        }
        boolean match(Matcher matcher, int i, CharSequence seq) {
            int[] buf = buffer;
            int len = buf.length;
            for (int j=0; j<len; j++) {
                if ((i+j) >= matcher.to) {
                    matcher.hitEnd = true;
                    return false;
                }
		int c = seq.charAt(i+j);
                if (buf[j] != c &&
		    buf[j] != Character.toLowerCase(Character.toUpperCase(c)))
		    return false;
            }
            return next.match(matcher, i+len, seq);
        }
    }

    /**
     * Node class for a case sensitive sequence of literal characters
     * including supplementary characters.
     */
    static final class SliceS extends SliceNode {
        SliceS(int[] buf) {
            super(buf);
        }
        boolean match(Matcher matcher, int i, CharSequence seq) {
	    int[] buf = buffer;
	    int x = i;
	    for (int j = 0; j < buf.length; j++) {
                if (x >= matcher.to) {
                    matcher.hitEnd = true;
                    return false;
                }
		int c = Character.codePointAt(seq, x);
		if (buf[j] != c)
		    return false;
		x += Character.charCount(c);
		if (x > matcher.to) {
                    matcher.hitEnd = true;
		    return false;
                }
	    }
            return next.match(matcher, x, seq);
        }
    }

    /**
     * Node class for a case insensitive sequence of literal characters
     * including supplementary characters.
     */
    static class SliceIS extends SliceNode {
        SliceIS(int[] buf) {
            super(buf);
        }
	int toLower(int c) {
	    return ASCII.toLower(c);
	}
        boolean match(Matcher matcher, int i, CharSequence seq) {
	    int[] buf = buffer;
	    int x = i;
	    for (int j = 0; j < buf.length; j++) {
                if (x >= matcher.to) {
                    matcher.hitEnd = true;
                    return false;
                }
		int c = Character.codePointAt(seq, x);
		if (buf[j] != c && buf[j] != toLower(c))
		    return false;
		x += Character.charCount(c);
		if (x > matcher.to) {
                    matcher.hitEnd = true;
		    return false;
                }
	    }
            return next.match(matcher, x, seq);
        }
    }

    /**
     * Node class for a case insensitive sequence of literal characters.
     * Uses unicode case folding.
     */
    static final class SliceUS extends SliceIS {
        SliceUS(int[] buf) {
	    super(buf);
        }
	int toLower(int c) {
	    return Character.toLowerCase(Character.toUpperCase(c));
	}
    }

    private static boolean inRange(int lower, int ch, int upper) {
	return lower <= ch && ch <= upper;
    }

    /**
     * Returns node for matching characters within an explicit value range.
     */
    private static CharProperty rangeFor(final int lower,
					 final int upper) {
	return new CharProperty() {
		boolean isSatisfiedBy(int ch) {
		    return inRange(lower, ch, upper);}};
    }

    /**
     * Returns node for matching characters within an explicit value
     * range in a case insensitive manner.
     */
    private CharProperty caseInsensitiveRangeFor(final int lower,
						 final int upper) {
	if (has(UNICODE_CASE))
	    return new CharProperty() {
		boolean isSatisfiedBy(int ch) {
		    if (inRange(lower, ch, upper))
			return true;
		    int up = Character.toUpperCase(ch);
		    return inRange(lower, up, upper) ||
		           inRange(lower, Character.toLowerCase(up), upper);}};
        return new CharProperty() { 
            boolean isSatisfiedBy(int ch) { 
                return inRange(lower, ch, upper) || 
                    ASCII.isAscii(ch) && 
                        (inRange(lower, ASCII.toUpper(ch), upper) || 
			 inRange(lower, ASCII.toLower(ch), upper)); 
	    }}; 
    }

    /**
     * Implements the Unicode category ALL and the dot metacharacter when
     * in dotall mode.
     */
    static final class All extends CharProperty {
	boolean isSatisfiedBy(int ch) {
	    return true;
	}
    }

    /**
     * Node class for the dot metacharacter when dotall is not enabled.
     */
    static final class Dot extends CharProperty {
	boolean isSatisfiedBy(int ch) {
	    return (ch != '\n' && ch != '\r'
                    && (ch|1) != '\u2029'
                    && ch != '\u0085');
        }
    }

    /**
     * Node class for the dot metacharacter when dotall is not enabled
     * but UNIX_LINES is enabled.
     */
    static final class UnixDot extends CharProperty {
	boolean isSatisfiedBy(int ch) {
	    return ch != '\n';
	}
    }

    /**
     * The 0 or 1 quantifier. This one class implements all three types.
     */
    static final class Ques extends Node {
        Node atom;
        int type;
        Ques(Node node, int type) {
            this.atom = node;
            this.type = type;
        }
        boolean match(Matcher matcher, int i, CharSequence seq) {
            switch (type) {
            case GREEDY:
                return (atom.match(matcher, i, seq) && next.match(matcher, matcher.last, seq))
                    || next.match(matcher, i, seq);
            case LAZY:
                return next.match(matcher, i, seq)
                    || (atom.match(matcher, i, seq) && next.match(matcher, matcher.last, seq));
            case POSSESSIVE:
                if (atom.match(matcher, i, seq)) i = matcher.last;
                return next.match(matcher, i, seq);
            default:
                return atom.match(matcher, i, seq) && next.match(matcher, matcher.last, seq);
            }
        }
        boolean study(TreeInfo info) {
            if (type != INDEPENDENT) {
                int minL = info.minLength;
                atom.study(info);
                info.minLength = minL;
                info.deterministic = false;
                return next.study(info);
            } else {
                atom.study(info);
                return next.study(info);
            }
        }
    }

    /**
     * Handles the curly-brace style repetition with a specified minimum and
     * maximum occurrences. The * quantifier is handled as a special case.
     * This class handles the three types.
     */
    static final class Curly extends Node {
        Node atom;
        int type;
        int cmin;
        int cmax;

        Curly(Node node, int cmin, int cmax, int type) {
            this.atom = node;
            this.type = type;
            this.cmin = cmin;
            this.cmax = cmax;
        }
        boolean match(Matcher matcher, int i, CharSequence seq) {
            int j;
            for (j = 0; j < cmin; j++) {
                if (atom.match(matcher, i, seq)) {
                    i = matcher.last;
                    continue;
                }
                return false;
            }
            if (type == GREEDY)
                return match0(matcher, i, j, seq);
            else if (type == LAZY)
                return match1(matcher, i, j, seq);
            else
                return match2(matcher, i, j, seq);
        }
        // Greedy match.
        // i is the index to start matching at
        // j is the number of atoms that have matched
        boolean match0(Matcher matcher, int i, int j, CharSequence seq) {
            if (j >= cmax) {
                // We have matched the maximum... continue with the rest of
                // the regular expression
                return next.match(matcher, i, seq);
            }
            int backLimit = j;
            while (atom.match(matcher, i, seq)) {
                // k is the length of this match
                int k = matcher.last - i;
                if (k == 0) // Zero length match
                    break;
                // Move up index and number matched
                i = matcher.last;
                j++;
                // We are greedy so match as many as we can
                while (j < cmax) {
                    if (!atom.match(matcher, i, seq))
                        break;
                    if (i + k != matcher.last) {
                        if (match0(matcher, matcher.last, j+1, seq))
                            return true;
                        break;
                    }
                    i += k;
                    j++;
                }
                // Handle backing off if match fails
                while (j >= backLimit) {
                   if (next.match(matcher, i, seq))
                        return true;
                    i -= k;
                    j--;
                }
                return false;
            }
            return next.match(matcher, i, seq);
        }
        // Reluctant match. At this point, the minimum has been satisfied.
        // i is the index to start matching at
        // j is the number of atoms that have matched
        boolean match1(Matcher matcher, int i, int j, CharSequence seq) {
            for (;;) {
                // Try finishing match without consuming any more
                if (next.match(matcher, i, seq))
                    return true;
                // At the maximum, no match found
                if (j >= cmax)
                    return false;
                // Okay, must try one more atom
                if (!atom.match(matcher, i, seq))
                    return false;
                // If we haven't moved forward then must break out
                if (i == matcher.last)
                    return false;
                // Move up index and number matched
                i = matcher.last;
                j++;
            }
        }
        boolean match2(Matcher matcher, int i, int j, CharSequence seq) {
            for (; j < cmax; j++) {
                if (!atom.match(matcher, i, seq))
                    break;
                if (i == matcher.last)
                    break;
                i = matcher.last;
            }
            return next.match(matcher, i, seq);
        }
        boolean study(TreeInfo info) {
            // Save original info
            int minL = info.minLength;
            int maxL = info.maxLength;
            boolean maxV = info.maxValid;
            boolean detm = info.deterministic;
            info.reset();

            atom.study(info);

            int temp = info.minLength * cmin + minL;
            if (temp < minL) {
                temp = 0xFFFFFFF; // arbitrary large number
            }
            info.minLength = temp;

            if (maxV & info.maxValid) {
                temp = info.maxLength * cmax + maxL;
                info.maxLength = temp;
                if (temp < maxL) {
                    info.maxValid = false;
                }
            } else {
                info.maxValid = false;
            }

            if (info.deterministic && cmin == cmax)
                info.deterministic = detm;
            else
                info.deterministic = false;

            return next.study(info);
        }
    }

    /**
     * Handles the curly-brace style repetition with a specified minimum and
     * maximum occurrences in deterministic cases. This is an iterative
     * optimization over the Prolog and Loop system which would handle this
     * in a recursive way. The * quantifier is handled as a special case.
     * If capture is true then this class saves group settings and ensures
     * that groups are unset when backing off of a group match.
     */
    static final class GroupCurly extends Node {
        Node atom;
        int type;
        int cmin;
        int cmax;
        int localIndex;
        int groupIndex;
        boolean capture;

        GroupCurly(Node node, int cmin, int cmax, int type, int local,
                   int group, boolean capture) {
            this.atom = node;
            this.type = type;
            this.cmin = cmin;
            this.cmax = cmax;
            this.localIndex = local;
            this.groupIndex = group;
            this.capture = capture;
        }
        boolean match(Matcher matcher, int i, CharSequence seq) {
            int[] groups = matcher.groups;
            int[] locals = matcher.locals;
            int save0 = locals[localIndex];
            int save1 = 0;
            int save2 = 0;

            if (capture) {
                save1 = groups[groupIndex];
                save2 = groups[groupIndex+1];
            }

            // Notify GroupTail there is no need to setup group info
            // because it will be set here
            locals[localIndex] = -1;

            boolean ret = true;
            for (int j = 0; j < cmin; j++) {
                if (atom.match(matcher, i, seq)) {
                    if (capture) {
                        groups[groupIndex] = i;
                        groups[groupIndex+1] = matcher.last;
                    }
                    i = matcher.last;
                } else {
                    ret = false;
                    break;
                }
            }
            if (ret) {
                if (type == GREEDY) {
                    ret = match0(matcher, i, cmin, seq);
                } else if (type == LAZY) {
                    ret = match1(matcher, i, cmin, seq);
                } else {
                    ret = match2(matcher, i, cmin, seq);
                }
	    }
            if (!ret) {
                locals[localIndex] = save0;
                if (capture) {
                    groups[groupIndex] = save1;
                    groups[groupIndex+1] = save2;
                }
	    }
            return ret;
        }
        // Aggressive group match
        boolean match0(Matcher matcher, int i, int j, CharSequence seq) {
            int[] groups = matcher.groups;
            int save0 = 0;
            int save1 = 0;
            if (capture) {
                save0 = groups[groupIndex];
                save1 = groups[groupIndex+1];
            }
            for (;;) {
                if (j >= cmax)
                    break;
                if (!atom.match(matcher, i, seq))
                    break;
                int k = matcher.last - i;
                if (k <= 0) {
                    if (capture) {
                        groups[groupIndex] = i;
                        groups[groupIndex+1] = i + k;
                    }
                    i = i + k;
                    break;
                }
                for (;;) {
                    if (capture) {
                        groups[groupIndex] = i;
                        groups[groupIndex+1] = i + k;
                    }
                    i = i + k;
                    if (++j >= cmax)
                        break;
                    if (!atom.match(matcher, i, seq))
                        break;
                    if (i + k != matcher.last) {
                        if (match0(matcher, i, j, seq))
                            return true;
                        break;
                    }
                }
                while (j > cmin) {
                    if (next.match(matcher, i, seq)) {
                        if (capture) {
                            groups[groupIndex+1] = i;
                            groups[groupIndex] = i - k;
                        }
                        i = i - k;
                        return true;
                    }
                    // backing off
                    if (capture) {
                        groups[groupIndex+1] = i;
                        groups[groupIndex] = i - k;
                    }
                    i = i - k;
                    j--;
                }
                break;
            }
            if (capture) {
                groups[groupIndex] = save0;
                groups[groupIndex+1] = save1;
            }
            return next.match(matcher, i, seq);
        }
        // Reluctant matching
        boolean match1(Matcher matcher, int i, int j, CharSequence seq) {
            for (;;) {
                if (next.match(matcher, i, seq))
                    return true;
                if (j >= cmax)
                    return false;
                if (!atom.match(matcher, i, seq))
                    return false;
                if (i == matcher.last)
                    return false;
                if (capture) {
                    matcher.groups[groupIndex] = i;
                    matcher.groups[groupIndex+1] = matcher.last;
                }
                i = matcher.last;
                j++;
            }
        }
        // Possessive matching
        boolean match2(Matcher matcher, int i, int j, CharSequence seq) {
            for (; j < cmax; j++) {
                if (!atom.match(matcher, i, seq)) {
                    break;
                }
                if (capture) {
                    matcher.groups[groupIndex] = i;
                    matcher.groups[groupIndex+1] = matcher.last;
                }
                if (i == matcher.last) {
                    break;
                }
                i = matcher.last;
            }
            return next.match(matcher, i, seq);
        }
        boolean study(TreeInfo info) {
            // Save original info
            int minL = info.minLength;
            int maxL = info.maxLength;
            boolean maxV = info.maxValid;
            boolean detm = info.deterministic;
            info.reset();

            atom.study(info);

            int temp = info.minLength * cmin + minL;
            if (temp < minL) {
                temp = 0xFFFFFFF; // Arbitrary large number
            }
            info.minLength = temp;

            if (maxV & info.maxValid) {
                temp = info.maxLength * cmax + maxL;
                info.maxLength = temp;
                if (temp < maxL) {
                    info.maxValid = false;
                }
            } else {
                info.maxValid = false;
            }

            if (info.deterministic && cmin == cmax) {
                info.deterministic = detm;
            } else {
                info.deterministic = false;
            }

            return next.study(info);
        }
    }

    /**
     * A Guard node at the end of each atom node in a Branch. It
     * serves the purpose of chaining the "match" operation to
     * "next" but not the "study", so we can collect the TreeInfo
     * of each atom node without including the TreeInfo of the
     * "next".
     */
    static final class BranchConn extends Node {
        BranchConn() {};
        boolean match(Matcher matcher, int i, CharSequence seq) {
            return next.match(matcher, i, seq);
        }
        boolean study(TreeInfo info) {
	    return info.deterministic;
        }
    }

    /**
     * Handles the branching of alternations. Note this is also used for
     * the ? quantifier to branch between the case where it matches once
     * and where it does not occur.
     */
    static final class Branch extends Node {
        Node[] atoms = new Node[2];
        int size = 2;
        Node conn;
        Branch(Node first, Node second, Node branchConn) {
            conn = branchConn;
            atoms[0] = first;            
            atoms[1] = second;
        }

        void add(Node node) {
            if (size >= atoms.length) {
                Node[] tmp = new Node[atoms.length*2];
                System.arraycopy(atoms, 0, tmp, 0, atoms.length);
                atoms = tmp;
            }
            atoms[size++] = node;
        }

        boolean match(Matcher matcher, int i, CharSequence seq) {
            for (int n = 0; n < size; n++) {
                if (atoms[n] == null) {
                    if (conn.next.match(matcher, i, seq))
                        return true;
		} else if (atoms[n].match(matcher, i, seq)) {
                    return true;
                }
            }
            return false;
        }

        boolean study(TreeInfo info) {
            int minL = info.minLength;
            int maxL = info.maxLength;
            boolean maxV = info.maxValid;

            int minL2 = Integer.MAX_VALUE; //arbitrary large enough num
            int maxL2 = -1;
            for (int n = 0; n < size; n++) {
                info.reset();
                if (atoms[n] != null)
                    atoms[n].study(info);
                minL2 = Math.min(minL2, info.minLength);
                maxL2 = Math.max(maxL2, info.maxLength);
                maxV = (maxV & info.maxValid);
            }

            minL += minL2;
            maxL += maxL2;

            info.reset();
            conn.next.study(info);

            info.minLength += minL;
            info.maxLength += maxL;
            info.maxValid &= maxV;
            info.deterministic = false;
            return false;
        }
    }

    /**
     * The GroupHead saves the location where the group begins in the locals
     * and restores them when the match is done.
     *
     * The matchRef is used when a reference to this group is accessed later
     * in the expression. The locals will have a negative value in them to
     * indicate that we do not want to unset the group if the reference
     * doesn't match.
     */
    static final class GroupHead extends Node {
        int localIndex;
        GroupHead(int localCount) {
            localIndex = localCount;
        }
        boolean match(Matcher matcher, int i, CharSequence seq) {
            int save = matcher.locals[localIndex];
            matcher.locals[localIndex] = i;
            boolean ret = next.match(matcher, i, seq);
            matcher.locals[localIndex] = save;
            return ret;
        }
        boolean matchRef(Matcher matcher, int i, CharSequence seq) {
            int save = matcher.locals[localIndex];
            matcher.locals[localIndex] = ~i; // HACK
            boolean ret = next.match(matcher, i, seq);
            matcher.locals[localIndex] = save;
            return ret;
        }
    }

    /**
     * Recursive reference to a group in the regular expression. It calls
     * matchRef because if the reference fails to match we would not unset
     * the group.
     */
    static final class GroupRef extends Node {
        GroupHead head;
        GroupRef(GroupHead head) {
            this.head = head;
        }
        boolean match(Matcher matcher, int i, CharSequence seq) {
            return head.matchRef(matcher, i, seq)
                && next.match(matcher, matcher.last, seq);
        }
        boolean study(TreeInfo info) {
            info.maxValid = false;
            info.deterministic = false;
            return next.study(info);
        }
    }

    /**
     * The GroupTail handles the setting of group beginning and ending
     * locations when groups are successfully matched. It must also be able to
     * unset groups that have to be backed off of.
     *
     * The GroupTail node is also used when a previous group is referenced,
     * and in that case no group information needs to be set.
     */
    static final class GroupTail extends Node {
        int localIndex;
        int groupIndex;
        GroupTail(int localCount, int groupCount) {
            localIndex = localCount;
            groupIndex = groupCount + groupCount;
        }
        boolean match(Matcher matcher, int i, CharSequence seq) {
            int tmp = matcher.locals[localIndex];
            if (tmp >= 0) { // This is the normal group case.
                // Save the group so we can unset it if it
                // backs off of a match.
                int groupStart = matcher.groups[groupIndex];
                int groupEnd = matcher.groups[groupIndex+1];

                matcher.groups[groupIndex] = tmp;
                matcher.groups[groupIndex+1] = i;
                if (next.match(matcher, i, seq)) {
                    return true;
                }
                matcher.groups[groupIndex] = groupStart;
                matcher.groups[groupIndex+1] = groupEnd;
                return false;
            } else {
                // This is a group reference case. We don't need to save any
                // group info because it isn't really a group.
                matcher.last = i;
                return true;
            }
        }
    }

    /**
     * This sets up a loop to handle a recursive quantifier structure.
     */
    static final class Prolog extends Node {
        Loop loop;
        Prolog(Loop loop) {
            this.loop = loop;
        }
        boolean match(Matcher matcher, int i, CharSequence seq) {
            return loop.matchInit(matcher, i, seq);
        }
        boolean study(TreeInfo info) {
            return loop.study(info);
        }
    }

    /**
     * Handles the repetition count for a greedy Curly. The matchInit
     * is called from the Prolog to save the index of where the group
     * beginning is stored. A zero length group check occurs in the
     * normal match but is skipped in the matchInit.
     */
    static class Loop extends Node {
        Node body;
        int countIndex; // local count index in matcher locals
        int beginIndex; // group beginning index
        int cmin, cmax;
        Loop(int countIndex, int beginIndex) {
            this.countIndex = countIndex;
            this.beginIndex = beginIndex;
        }
        boolean match(Matcher matcher, int i, CharSequence seq) {
            // Avoid infinite loop in zero-length case.
            if (i > matcher.locals[beginIndex]) {
                int count = matcher.locals[countIndex];

                // This block is for before we reach the minimum
                // iterations required for the loop to match
                if (count < cmin) {
                    matcher.locals[countIndex] = count + 1;
                    boolean b = body.match(matcher, i, seq);
                    // If match failed we must backtrack, so
                    // the loop count should NOT be incremented
                    if (!b)
                        matcher.locals[countIndex] = count;
                    // Return success or failure since we are under
                    // minimum
                    return b;
                }
                // This block is for after we have the minimum
                // iterations required for the loop to match
                if (count < cmax) {
                    matcher.locals[countIndex] = count + 1;
                    boolean b = body.match(matcher, i, seq);
                    // If match failed we must backtrack, so
                    // the loop count should NOT be incremented
                    if (!b)
                        matcher.locals[countIndex] = count;
                    else
                        return true;
                }
            }
            return next.match(matcher, i, seq);
        }
        boolean matchInit(Matcher matcher, int i, CharSequence seq) {
            int save = matcher.locals[countIndex];
            boolean ret = false;
            if (0 < cmin) {
                matcher.locals[countIndex] = 1;
                ret = body.match(matcher, i, seq);
            } else if (0 < cmax) {
                matcher.locals[countIndex] = 1;
                ret = body.match(matcher, i, seq);
                if (ret == false)
                    ret = next.match(matcher, i, seq);
            } else {
                ret = next.match(matcher, i, seq);
            }
            matcher.locals[countIndex] = save;
            return ret;
        }
        boolean study(TreeInfo info) {
            info.maxValid = false;
            info.deterministic = false;
            return false;
        }
    }

    /**
     * Handles the repetition count for a reluctant Curly. The matchInit
     * is called from the Prolog to save the index of where the group
     * beginning is stored. A zero length group check occurs in the
     * normal match but is skipped in the matchInit.
     */
    static final class LazyLoop extends Loop {
        LazyLoop(int countIndex, int beginIndex) {
            super(countIndex, beginIndex);
        }
        boolean match(Matcher matcher, int i, CharSequence seq) {
            // Check for zero length group
            if (i > matcher.locals[beginIndex]) {
                int count = matcher.locals[countIndex];
                if (count < cmin) {
                    matcher.locals[countIndex] = count + 1;
                    boolean result = body.match(matcher, i, seq);
                    // If match failed we must backtrack, so
                    // the loop count should NOT be incremented
                    if (!result)
                        matcher.locals[countIndex] = count;
                    return result;
                }
                if (next.match(matcher, i, seq))
                    return true;
                if (count < cmax) {
                    matcher.locals[countIndex] = count + 1;
                    boolean result = body.match(matcher, i, seq);
                    // If match failed we must backtrack, so
                    // the loop count should NOT be incremented
                    if (!result)
                        matcher.locals[countIndex] = count;
                    return result;
                }
                return false;
            }
            return next.match(matcher, i, seq);
        }
        boolean matchInit(Matcher matcher, int i, CharSequence seq) {
            int save = matcher.locals[countIndex];
            boolean ret = false;
            if (0 < cmin) {
                matcher.locals[countIndex] = 1;
                ret = body.match(matcher, i, seq);
            } else if (next.match(matcher, i, seq)) {
                ret = true;
            } else if (0 < cmax) {
                matcher.locals[countIndex] = 1;
                ret = body.match(matcher, i, seq);
            }
            matcher.locals[countIndex] = save;
            return ret;
        }
        boolean study(TreeInfo info) {
            info.maxValid = false;
            info.deterministic = false;
            return false;
        }
    }

    /**
     * Refers to a group in the regular expression. Attempts to match
     * whatever the group referred to last matched.
     */
    static class BackRef extends Node {
        int groupIndex;
        BackRef(int groupCount) {
            super();
            groupIndex = groupCount + groupCount;
        }
        boolean match(Matcher matcher, int i, CharSequence seq) {
            int j = matcher.groups[groupIndex];
            int k = matcher.groups[groupIndex+1];

            int groupSize = k - j;

            // If the referenced group didn't match, neither can this
            if (j < 0)
                return false;

            // If there isn't enough input left no match
            if (i + groupSize > matcher.to) {
                matcher.hitEnd = true;
                return false;
            }

            // Check each new char to make sure it matches what the group
            // referenced matched last time around
            for (int index=0; index<groupSize; index++)
                if (seq.charAt(i+index) != seq.charAt(j+index))
                    return false;

            return next.match(matcher, i+groupSize, seq);
        }
        boolean study(TreeInfo info) {
            info.maxValid = false;
            return next.study(info);
        }
    }

    static class CIBackRef extends Node {
        int groupIndex;
	boolean doUnicodeCase;
        CIBackRef(int groupCount, boolean doUnicodeCase) {
            super();
            groupIndex = groupCount + groupCount;
	    this.doUnicodeCase = doUnicodeCase;
        }
        boolean match(Matcher matcher, int i, CharSequence seq) {
            int j = matcher.groups[groupIndex];
            int k = matcher.groups[groupIndex+1];

            int groupSize = k - j;

            // If the referenced group didn't match, neither can this
            if (j < 0)
                return false;

            // If there isn't enough input left no match
            if (i + groupSize > matcher.to) {
                matcher.hitEnd = true;
                return false;
            }

            // Check each new char to make sure it matches what the group
            // referenced matched last time around
	    int x = i;
            for (int index=0; index<groupSize; index++) {
                int c1 = Character.codePointAt(seq, x);
                int c2 = Character.codePointAt(seq, j);
                if (c1 != c2) {
		    if (doUnicodeCase) {
			int cc1 = Character.toUpperCase(c1);
			int cc2 = Character.toUpperCase(c2);
			if (cc1 != cc2 &&
			    Character.toLowerCase(cc1) != 
			    Character.toLowerCase(cc2))
			    return false;
		    } else {
			if (ASCII.toLower(c1) != ASCII.toLower(c2))
			    return false;
		    }
		}
		x += Character.charCount(c1);
		j += Character.charCount(c2);
            }

            return next.match(matcher, i+groupSize, seq);
        }
        boolean study(TreeInfo info) {
            info.maxValid = false;
            return next.study(info);
        }
    }

    /**
     * Searches until the next instance of its atom. This is useful for
     * finding the atom efficiently without passing an instance of it
     * (greedy problem) and without a lot of wasted search time (reluctant
     * problem).
     */
    static final class First extends Node {
        Node atom;
        First(Node node) {
            this.atom = BnM.optimize(node);
        }
        boolean match(Matcher matcher, int i, CharSequence seq) {
            if (atom instanceof BnM) {
                return atom.match(matcher, i, seq)
                    && next.match(matcher, matcher.last, seq);
            }
            for (;;) {
                if (i > matcher.to) {
                    matcher.hitEnd = true;
                    return false;
                }
                if (atom.match(matcher, i, seq)) {
                    return next.match(matcher, matcher.last, seq);
                }
                i += countChars(seq, i, 1);
                matcher.first++;
            }
        }
        boolean study(TreeInfo info) {
            atom.study(info);
            info.maxValid = false;
            info.deterministic = false;
            return next.study(info);
        }
    }

    static final class Conditional extends Node {
        Node cond, yes, not;
        Conditional(Node cond, Node yes, Node not) {
            this.cond = cond;
            this.yes = yes;
            this.not = not;
        }
        boolean match(Matcher matcher, int i, CharSequence seq) {
            if (cond.match(matcher, i, seq)) {
                return yes.match(matcher, i, seq);
            } else {
                return not.match(matcher, i, seq);
            }
        }
        boolean study(TreeInfo info) {
            int minL = info.minLength;
            int maxL = info.maxLength;
            boolean maxV = info.maxValid;
            info.reset();
            yes.study(info);

            int minL2 = info.minLength;
            int maxL2 = info.maxLength;
            boolean maxV2 = info.maxValid;
            info.reset();
            not.study(info);

            info.minLength = minL + Math.min(minL2, info.minLength);
            info.maxLength = maxL + Math.max(maxL2, info.maxLength);
            info.maxValid = (maxV & maxV2 & info.maxValid);
            info.deterministic = false;
            return next.study(info);
        }
    }

    /**
     * Zero width positive lookahead.
     */
    static final class Pos extends Node {
        Node cond;
        Pos(Node cond) {
            this.cond = cond;
        }
        boolean match(Matcher matcher, int i, CharSequence seq) {
            int savedTo = matcher.to;
            boolean conditionMatched = false;

            // Relax transparent region boundaries for lookahead
            if (matcher.transparentBounds)
                matcher.to = matcher.getTextLength();
            try {
                conditionMatched = cond.match(matcher, i, seq);
            } finally {
                // Reinstate region boundaries
                matcher.to = savedTo;
            }
            return conditionMatched && next.match(matcher, i, seq);
        }
    }

    /**
     * Zero width negative lookahead.
     */
    static final class Neg extends Node {
        Node cond;
        Neg(Node cond) {
            this.cond = cond;
        }
        boolean match(Matcher matcher, int i, CharSequence seq) {
            int savedTo = matcher.to;
            boolean conditionMatched = false;

            // Relax transparent region boundaries for lookahead
            if (matcher.transparentBounds)
                matcher.to = matcher.getTextLength();
            try {
                if (i < matcher.to) {
                    conditionMatched = !cond.match(matcher, i, seq);
                } else {
                    // If a negative lookahead succeeds then more input
                    // could cause it to fail!
                    matcher.requireEnd = true;
                    conditionMatched = !cond.match(matcher, i, seq);
                }
            } finally {
                // Reinstate region boundaries
                matcher.to = savedTo;
            }
            return conditionMatched && next.match(matcher, i, seq);
        }
    }

    /**
     * For use with lookbehinds; matches the position where the lookbehind
     * was encountered.
     */
    static Node lookbehindEnd = new Node() {
        boolean match(Matcher matcher, int i, CharSequence seq) {
            return i == matcher.lookbehindTo;
        }
    };

    /**
     * Zero width positive lookbehind.
     */
    static class Behind extends Node {
        Node cond;
        int rmax, rmin;
        Behind(Node cond, int rmax, int rmin) {
            this.cond = cond;
            this.rmax = rmax;
            this.rmin = rmin;
        }

        boolean match(Matcher matcher, int i, CharSequence seq) {
            int savedFrom = matcher.from;
            boolean conditionMatched = false;
            int startIndex = (!matcher.transparentBounds) ?
                             matcher.from : 0;
            int from = Math.max(i - rmax, startIndex);
            // Set end boundary
            int savedLBT = matcher.lookbehindTo;
            matcher.lookbehindTo = i;
            // Relax transparent region boundaries for lookbehind
            if (matcher.transparentBounds)
                matcher.from = 0;
            for (int j = i - rmin; !conditionMatched && j >= from; j--) {
                conditionMatched = cond.match(matcher, j, seq); 
            }
            matcher.from = savedFrom;
            matcher.lookbehindTo = savedLBT;
            return conditionMatched && next.match(matcher, i, seq);
        }
    }

    /**
     * Zero width positive lookbehind, including supplementary
     * characters or unpaired surrogates.
     */
    static final class BehindS extends Behind {
        BehindS(Node cond, int rmax, int rmin) {
            super(cond, rmax, rmin);
        }
        boolean match(Matcher matcher, int i, CharSequence seq) {
	    int rmaxChars = countChars(seq, i, -rmax);
	    int rminChars = countChars(seq, i, -rmin);
            int savedFrom = matcher.from;
            int startIndex = (!matcher.transparentBounds) ?
                             matcher.from : 0;
            boolean conditionMatched = false;
            int from = Math.max(i - rmaxChars, startIndex);
            // Set end boundary
            int savedLBT = matcher.lookbehindTo;
            matcher.lookbehindTo = i;
            // Relax transparent region boundaries for lookbehind
            if (matcher.transparentBounds)
                matcher.from = 0;

            for (int j = i - rminChars;
                 !conditionMatched && j >= from;
                 j -= j>from ? countChars(seq, j, -1) : 1) {
                conditionMatched = cond.match(matcher, j, seq); 
            }
	    matcher.from = savedFrom;
            matcher.lookbehindTo = savedLBT;
            return conditionMatched && next.match(matcher, i, seq);
        }
    }

    /**
     * Zero width negative lookbehind.
     */
    static class NotBehind extends Node {
        Node cond;
        int rmax, rmin;
        NotBehind(Node cond, int rmax, int rmin) {
            this.cond = cond;
            this.rmax = rmax;
            this.rmin = rmin;
        }

        boolean match(Matcher matcher, int i, CharSequence seq) {
            int savedLBT = matcher.lookbehindTo;
            int savedFrom = matcher.from;
            boolean conditionMatched = false;
            int startIndex = (!matcher.transparentBounds) ?
                             matcher.from : 0;
            int from = Math.max(i - rmax, startIndex);
            matcher.lookbehindTo = i;
            // Relax transparent region boundaries for lookbehind
            if (matcher.transparentBounds)
                matcher.from = 0;
            for (int j = i - rmin; !conditionMatched && j >= from; j--) {
                conditionMatched = cond.match(matcher, j, seq); 
            }
            // Reinstate region boundaries
            matcher.from = savedFrom;
            matcher.lookbehindTo = savedLBT;
            return !conditionMatched && next.match(matcher, i, seq);
        }
    }

    /**
     * Zero width negative lookbehind, including supplementary
     * characters or unpaired surrogates.
     */
    static final class NotBehindS extends NotBehind {
        NotBehindS(Node cond, int rmax, int rmin) {
            super(cond, rmax, rmin);
        }
        boolean match(Matcher matcher, int i, CharSequence seq) {
	    int rmaxChars = countChars(seq, i, -rmax);
	    int rminChars = countChars(seq, i, -rmin);
            int savedFrom = matcher.from;
            int savedLBT = matcher.lookbehindTo;
            boolean conditionMatched = false;
            int startIndex = (!matcher.transparentBounds) ?
                             matcher.from : 0;
            int from = Math.max(i - rmaxChars, startIndex);
            matcher.lookbehindTo = i;
            // Relax transparent region boundaries for lookbehind
            if (matcher.transparentBounds)
                matcher.from = 0;
            for (int j = i - rminChars;
                 !conditionMatched && j >= from;
                 j -= j>from ? countChars(seq, j, -1) : 1) {
                conditionMatched = cond.match(matcher, j, seq);
            }
            //Reinstate region boundaries
            matcher.from = savedFrom;
            matcher.lookbehindTo = savedLBT;
            return !conditionMatched && next.match(matcher, i, seq);
        }
    }

    /**
     * Returns the set union of two CharProperty nodes.
     */
    private static CharProperty union(final CharProperty lhs,
				      final CharProperty rhs) {
	return new CharProperty() {
		boolean isSatisfiedBy(int ch) {
		    return lhs.isSatisfiedBy(ch) || rhs.isSatisfiedBy(ch);}};
    }

    /**
     * Returns the set intersection of two CharProperty nodes.
     */
    private static CharProperty intersection(final CharProperty lhs,
					     final CharProperty rhs) {
	return new CharProperty() {
		boolean isSatisfiedBy(int ch) {
		    return lhs.isSatisfiedBy(ch) && rhs.isSatisfiedBy(ch);}};
    }

    /**
     * Returns the set difference of two CharProperty nodes.
     */
    private static CharProperty setDifference(final CharProperty lhs,
					      final CharProperty rhs) {
	return new CharProperty() {
		boolean isSatisfiedBy(int ch) {
		    return ! rhs.isSatisfiedBy(ch) && lhs.isSatisfiedBy(ch);}};
    }

    /**
     * Handles word boundaries. Includes a field to allow this one class to
     * deal with the different types of word boundaries we can match. The word
     * characters include underscores, letters, and digits. Non spacing marks
     * can are also part of a word if they have a base character, otherwise
     * they are ignored for purposes of finding word boundaries.
     */
    static final class Bound extends Node {
        static int LEFT = 0x1;
        static int RIGHT= 0x2;
        static int BOTH = 0x3;
        static int NONE = 0x4;
        int type;
        Bound(int n) {
            type = n;
        }
        int check(Matcher matcher, int i, CharSequence seq) {
            int ch;
            boolean left = false;
            int startIndex = matcher.from;
            int endIndex = matcher.to;
            if (matcher.transparentBounds) {
                startIndex = 0;
                endIndex = matcher.getTextLength();
            }
            if (i > startIndex) {
                ch = Character.codePointBefore(seq, i);
                left = (ch == '_' || Character.isLetterOrDigit(ch) ||
                    ((Character.getType(ch) == Character.NON_SPACING_MARK)
                     && hasBaseCharacter(matcher, i-1, seq)));
            }
            boolean right = false;
            if (i < endIndex) {
                ch = Character.codePointAt(seq, i);
                right = (ch == '_' || Character.isLetterOrDigit(ch) ||
                    ((Character.getType(ch) == Character.NON_SPACING_MARK)
                     && hasBaseCharacter(matcher, i, seq)));
            } else {
                // Tried to access char past the end
                matcher.hitEnd = true;
                // The addition of another char could wreck a boundary
                matcher.requireEnd = true;
            }
            return ((left ^ right) ? (right ? LEFT : RIGHT) : NONE);
        }
        boolean match(Matcher matcher, int i, CharSequence seq) {
            return (check(matcher, i, seq) & type) > 0
                && next.match(matcher, i, seq);
        }
    }

    /**
     * Non spacing marks only count as word characters in bounds calculations
     * if they have a base character.
     */
    private static boolean hasBaseCharacter(Matcher matcher, int i,
                                            CharSequence seq)
    {
        int start = (!matcher.transparentBounds) ?
            matcher.from : 0;
        for (int x=i; x >= start; x--) {
            int ch = Character.codePointAt(seq, x);
            if (Character.isLetterOrDigit(ch))
                return true;
            if (Character.getType(ch) == Character.NON_SPACING_MARK)
                continue;
            return false;
        }
        return false;
    }

    /**
     * Attempts to match a slice in the input using the Boyer-Moore string
     * matching algorithm. The algorithm is based on the idea that the
     * pattern can be shifted farther ahead in the search text if it is
     * matched right to left.
     * <p>
     * The pattern is compared to the input one character at a time, from
     * the rightmost character in the pattern to the left. If the characters
     * all match the pattern has been found. If a character does not match,
     * the pattern is shifted right a distance that is the maximum of two
     * functions, the bad character shift and the good suffix shift. This
     * shift moves the attempted match position through the input more
     * quickly than a naive one position at a time check.
     * <p>
     * The bad character shift is based on the character from the text that
     * did not match. If the character does not appear in the pattern, the
     * pattern can be shifted completely beyond the bad character. If the
     * character does occur in the pattern, the pattern can be shifted to
     * line the pattern up with the next occurrence of that character.
     * <p>
     * The good suffix shift is based on the idea that some subset on the right
     * side of the pattern has matched. When a bad character is found, the
     * pattern can be shifted right by the pattern length if the subset does
     * not occur again in pattern, or by the amount of distance to the
     * next occurrence of the subset in the pattern.
     *
     * Boyer-Moore search methods adapted from code by Amy Yu.
     */
    static class BnM extends Node {
        int[] buffer;
        int[] lastOcc;
        int[] optoSft;

        /**
         * Pre calculates arrays needed to generate the bad character
         * shift and the good suffix shift. Only the last seven bits
         * are used to see if chars match; This keeps the tables small
         * and covers the heavily used ASCII range, but occasionally
         * results in an aliased match for the bad character shift.
         */
        static Node optimize(Node node) {
            if (!(node instanceof Slice)) {
                return node;
            }

            int[] src = ((Slice) node).buffer;
            int patternLength = src.length;
            // The BM algorithm requires a bit of overhead;
            // If the pattern is short don't use it, since
            // a shift larger than the pattern length cannot
            // be used anyway.
            if (patternLength < 4) {
                return node;
            }
            int i, j, k;
            int[] lastOcc = new int[128];
            int[] optoSft = new int[patternLength];
            // Precalculate part of the bad character shift
            // It is a table for where in the pattern each
            // lower 7-bit value occurs
            for (i = 0; i < patternLength; i++) {
                lastOcc[src[i]&0x7F] = i + 1;
            }
            // Precalculate the good suffix shift
            // i is the shift amount being considered
NEXT:       for (i = patternLength; i > 0; i--) {
                // j is the beginning index of suffix being considered
                for (j = patternLength - 1; j >= i; j--) {
                    // Testing for good suffix
                    if (src[j] == src[j-i]) {
                        // src[j..len] is a good suffix
                        optoSft[j-1] = i;
                    } else {
                        // No match. The array has already been
                        // filled up with correct values before.
                        continue NEXT;
                    }
                }
                // This fills up the remaining of optoSft
                // any suffix can not have larger shift amount
                // then its sub-suffix. Why???
                while (j > 0) {
                    optoSft[--j] = i;
                }
            }
            // Set the guard value because of unicode compression
            optoSft[patternLength-1] = 1;
	    if (node instanceof SliceS)
		return new BnMS(src, lastOcc, optoSft, node.next);
            return new BnM(src, lastOcc, optoSft, node.next);
        }
        BnM(int[] src, int[] lastOcc, int[] optoSft, Node next) {
            this.buffer = src;
            this.lastOcc = lastOcc;
            this.optoSft = optoSft;
            this.next = next;
        }
        boolean match(Matcher matcher, int i, CharSequence seq) {
            int[] src = buffer;
            int patternLength = src.length;
            int last = matcher.to - patternLength;

            // Loop over all possible match positions in text
NEXT:       while (i <= last) {
                // Loop over pattern from right to left
                for (int j = patternLength - 1; j >= 0; j--) {
                    int ch = seq.charAt(i+j);
                    if (ch != src[j]) {
                        // Shift search to the right by the maximum of the
                        // bad character shift and the good suffix shift
                        i += Math.max(j + 1 - lastOcc[ch&0x7F], optoSft[j]);
                        continue NEXT;
                    }
                }
                // Entire pattern matched starting at i
                matcher.first = i;
                boolean ret = next.match(matcher, i + patternLength, seq);
                if (ret) {
                    matcher.first = i;
                    matcher.groups[0] = matcher.first;
                    matcher.groups[1] = matcher.last;
                    return true;
                }
                i++;
            }
            // BnM is only used as the leading node in the unanchored case,
            // and it replaced its Start() which always searches to the end
            // if it doesn't find what it's looking for, so hitEnd is true.
            matcher.hitEnd = true;
            return false;
        }
        boolean study(TreeInfo info) {
            info.minLength += buffer.length;
            info.maxValid = false;
            return next.study(info);
        }
    }

    /**
     * Supplementary support version of BnM(). Unpaired surrogates are
     * also handled by this class.
     */
    static final class BnMS extends BnM {
	int lengthInChars;

	BnMS(int[] src, int[] lastOcc, int[] optoSft, Node next) {
	    super(src, lastOcc, optoSft, next);
	    for (int x = 0; x < buffer.length; x++) {
		lengthInChars += Character.charCount(buffer[x]);
	    }
	}
	boolean match(Matcher matcher, int i, CharSequence seq) {
            int[] src = buffer;
            int patternLength = src.length;
	    int last = matcher.to - lengthInChars;

            // Loop over all possible match positions in text
NEXT:       while (i <= last) {
                // Loop over pattern from right to left
		int ch;
                for (int j = countChars(seq, i, patternLength), x = patternLength - 1;
		     j > 0; j -= Character.charCount(ch), x--) {
		    ch = Character.codePointBefore(seq, i+j);
                    if (ch != src[x]) {
                        // Shift search to the right by the maximum of the
                        // bad character shift and the good suffix shift
                        int n = Math.max(x + 1 - lastOcc[ch&0x7F], optoSft[x]);
			i += countChars(seq, i, n);
                        continue NEXT;
                    }
                }
                // Entire pattern matched starting at i
                matcher.first = i;
                boolean ret = next.match(matcher, i + lengthInChars, seq);
                if (ret) {
                    matcher.first = i;
                    matcher.groups[0] = matcher.first;
                    matcher.groups[1] = matcher.last;
                    return true;
                }
		i += countChars(seq, i, 1);
            }
            matcher.hitEnd = true;
            return false;
        }
    }

///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////

    /**
     *  This must be the very first initializer.
     */
    static Node accept = new Node();

    static Node lastAccept = new LastNode();

    private static class CharPropertyNames {

	static CharProperty charPropertyFor(String name) {
	    CharPropertyFactory m = map.get(name);
	    return m == null ? null : m.make();
	}

	private static abstract class CharPropertyFactory {
	    abstract CharProperty make();
	}

	private static void defCategory(String name,
					final int typeMask) {
	    map.put(name, new CharPropertyFactory() {
		    CharProperty make() { return new Category(typeMask);}});
	}

	private static void defRange(String name,
				     final int lower, final int upper) {
	    map.put(name, new CharPropertyFactory() {
		    CharProperty make() { return rangeFor(lower, upper);}});
	}

	private static void defCtype(String name,
				     final int ctype) {
	    map.put(name, new CharPropertyFactory() {
		    CharProperty make() { return new Ctype(ctype);}});
	}

	private static abstract class CloneableProperty
	    extends CharProperty implements Cloneable
	{
	    public CloneableProperty clone() {
		try {
		    return (CloneableProperty) super.clone();
		} catch (CloneNotSupportedException e) {
		    throw new AssertionError(e);
		}
	    }
	}

	private static void defClone(String name,
				     final CloneableProperty p) {
	    map.put(name, new CharPropertyFactory() {
		    CharProperty make() { return p.clone();}});
	}

        private static final HashMap<String, CharPropertyFactory> map
	    = new HashMap<String, CharPropertyFactory>();

        static {
	    // Unicode character property aliases, defined in
	    // http://www.unicode.org/Public/UNIDATA/PropertyValueAliases.txt
	    defCategory("Cn", 1<<Character.UNASSIGNED);
            defCategory("Lu", 1<<Character.UPPERCASE_LETTER);
            defCategory("Ll", 1<<Character.LOWERCASE_LETTER);
            defCategory("Lt", 1<<Character.TITLECASE_LETTER);
            defCategory("Lm", 1<<Character.MODIFIER_LETTER);
            defCategory("Lo", 1<<Character.OTHER_LETTER);
            defCategory("Mn", 1<<Character.NON_SPACING_MARK);
            defCategory("Me", 1<<Character.ENCLOSING_MARK);
            defCategory("Mc", 1<<Character.COMBINING_SPACING_MARK);
            defCategory("Nd", 1<<Character.DECIMAL_DIGIT_NUMBER);
            defCategory("Nl", 1<<Character.LETTER_NUMBER);
            defCategory("No", 1<<Character.OTHER_NUMBER);
            defCategory("Zs", 1<<Character.SPACE_SEPARATOR);
            defCategory("Zl", 1<<Character.LINE_SEPARATOR);
            defCategory("Zp", 1<<Character.PARAGRAPH_SEPARATOR);
            defCategory("Cc", 1<<Character.CONTROL);
            defCategory("Cf", 1<<Character.FORMAT);
            defCategory("Co", 1<<Character.PRIVATE_USE);
            defCategory("Cs", 1<<Character.SURROGATE);
            defCategory("Pd", 1<<Character.DASH_PUNCTUATION);
            defCategory("Ps", 1<<Character.START_PUNCTUATION);
            defCategory("Pe", 1<<Character.END_PUNCTUATION);
            defCategory("Pc", 1<<Character.CONNECTOR_PUNCTUATION);
            defCategory("Po", 1<<Character.OTHER_PUNCTUATION);
            defCategory("Sm", 1<<Character.MATH_SYMBOL);
            defCategory("Sc", 1<<Character.CURRENCY_SYMBOL);
            defCategory("Sk", 1<<Character.MODIFIER_SYMBOL);
            defCategory("So", 1<<Character.OTHER_SYMBOL);
            defCategory("Pi", 1<<Character.INITIAL_QUOTE_PUNCTUATION);
            defCategory("Pf", 1<<Character.FINAL_QUOTE_PUNCTUATION);
            defCategory("L", ((1<<Character.UPPERCASE_LETTER) |
			      (1<<Character.LOWERCASE_LETTER) |
			      (1<<Character.TITLECASE_LETTER) |
			      (1<<Character.MODIFIER_LETTER)  |
			      (1<<Character.OTHER_LETTER)));
            defCategory("M", ((1<<Character.NON_SPACING_MARK) |
			      (1<<Character.ENCLOSING_MARK)   |
			      (1<<Character.COMBINING_SPACING_MARK)));
	    defCategory("N", ((1<<Character.DECIMAL_DIGIT_NUMBER) |
			      (1<<Character.LETTER_NUMBER)        |
			      (1<<Character.OTHER_NUMBER)));
            defCategory("Z", ((1<<Character.SPACE_SEPARATOR) |
			      (1<<Character.LINE_SEPARATOR)  |
			      (1<<Character.PARAGRAPH_SEPARATOR)));
            defCategory("C", ((1<<Character.CONTROL)     |
			      (1<<Character.FORMAT)      |
			      (1<<Character.PRIVATE_USE) |
			      (1<<Character.SURROGATE))); // Other
            defCategory("P", ((1<<Character.DASH_PUNCTUATION)      |
			      (1<<Character.START_PUNCTUATION)     |
			      (1<<Character.END_PUNCTUATION)       |
			      (1<<Character.CONNECTOR_PUNCTUATION) |
			      (1<<Character.OTHER_PUNCTUATION)     |
			      (1<<Character.INITIAL_QUOTE_PUNCTUATION) |
			      (1<<Character.FINAL_QUOTE_PUNCTUATION)));
            defCategory("S", ((1<<Character.MATH_SYMBOL)     |
			      (1<<Character.CURRENCY_SYMBOL) |
			      (1<<Character.MODIFIER_SYMBOL) |
			      (1<<Character.OTHER_SYMBOL)));
            defCategory("LC", ((1<<Character.UPPERCASE_LETTER) |
			       (1<<Character.LOWERCASE_LETTER) |
			       (1<<Character.TITLECASE_LETTER)));
            defCategory("LD", ((1<<Character.UPPERCASE_LETTER) |
			       (1<<Character.LOWERCASE_LETTER) |
			       (1<<Character.TITLECASE_LETTER) |
			       (1<<Character.MODIFIER_LETTER)  |
			       (1<<Character.OTHER_LETTER)     |
			       (1<<Character.DECIMAL_DIGIT_NUMBER)));
	    defRange("L1", 0x00, 0xFF); // Latin-1
            map.put(__JOT_PIECE_503__, new CharPropertyFactory() {
		    CharProperty make() { return new All(); }});

	    // Posix regular expression character classes, defined in
	    // http://www.unix.org/onlinepubs/009695399/basedefs/xbd_chap09.html
            defRange("ASCII", 0x00, 0x7F);   // ASCII
	    defCtype("Alnum", ASCII.ALNUM);  // Alphanumeric characters
            defCtype("Alpha", ASCII.ALPHA);  // Alphabetic characters
            defCtype("Blank", ASCII.BLANK);  // Space and tab characters
            defCtype("Cntrl", ASCII.CNTRL);  // Control characters
            defRange("Digit", '0', '9');     // Numeric characters
            defCtype("Graph", ASCII.GRAPH);  // printable and visible
            defRange("Lower", 'a', 'z');     // Lower-case alphabetic
            defRange("Print", 0x20, 0x7E);   // Printable characters
            defCtype("Punct", ASCII.PUNCT);  // Punctuation characters
            defCtype("Space", ASCII.SPACE);  // Space characters
            defRange("Upper", 'A', 'Z');     // Upper-case alphabetic
            defCtype("XDigit",ASCII.XDIGIT); // hexadecimal digits

	    // Java character properties, defined by methods in Character.java
	    defClone(__JOT_PIECE_517__, new CloneableProperty() {
		boolean isSatisfiedBy(int ch) {
		    return Character.isLowerCase(ch);}});
	    defClone(__JOT_PIECE_518__, new CloneableProperty() {
		boolean isSatisfiedBy(int ch) {
		    return Character.isUpperCase(ch);}});
            defClone(__JOT_PIECE_519__, new CloneableProperty() {
		boolean isSatisfiedBy(int ch) {
		    return Character.isTitleCase(ch);}});
            defClone(__JOT_PIECE_520__, new CloneableProperty() {
		boolean isSatisfiedBy(int ch) {
		    return Character.isDigit(ch);}});
            defClone(__JOT_PIECE_521__, new CloneableProperty() {
		boolean isSatisfiedBy(int ch) {
		    return Character.isDefined(ch);}});
            defClone(__JOT_PIECE_522__, new CloneableProperty() {
		boolean isSatisfiedBy(int ch) {
		    return Character.isLetter(ch);}});
            defClone(__JOT_PIECE_523__, new CloneableProperty() {
		boolean isSatisfiedBy(int ch) {
		    return Character.isLetterOrDigit(ch);}});
            defClone(__JOT_PIECE_524__, new CloneableProperty() {
		boolean isSatisfiedBy(int ch) {
		    return Character.isJavaIdentifierStart(ch);}});
            defClone(__JOT_PIECE_525__, new CloneableProperty() {
		boolean isSatisfiedBy(int ch) {
		    return Character.isJavaIdentifierPart(ch);}});
            defClone(__JOT_PIECE_526__, new CloneableProperty() {
		boolean isSatisfiedBy(int ch) {
		    return Character.isUnicodeIdentifierStart(ch);}});
            defClone(__JOT_PIECE_527__, new CloneableProperty() {
		boolean isSatisfiedBy(int ch) {
		    return Character.isUnicodeIdentifierPart(ch);}});
            defClone(__JOT_PIECE_528__, new CloneableProperty() {
		boolean isSatisfiedBy(int ch) {
		    return Character.isIdentifierIgnorable(ch);}});
            defClone(__JOT_PIECE_529__, new CloneableProperty() {
		boolean isSatisfiedBy(int ch) {
		    return Character.isSpaceChar(ch);}});
            defClone(__JOT_PIECE_530__, new CloneableProperty() {
		boolean isSatisfiedBy(int ch) {
		    return Character.isWhitespace(ch);}});
            defClone(__JOT_PIECE_531__, new CloneableProperty() {
		boolean isSatisfiedBy(int ch) {
		    return Character.isISOControl(ch);}});
            defClone(__JOT_PIECE_532__, new CloneableProperty() {
		boolean isSatisfiedBy(int ch) {
		    return Character.isMirrored(ch);}});
        }
    }
}

Generated By: JavaOnTracks Doclet 0.1.4     ©Thibaut Colar