API Overview API Index Package Overview Direct link to this page
JDK 1.6
  java.lang. Double View Javadoc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951

/*
 * @(#)Double.java	1.100 06/04/07
 *
 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
 * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
 */

package java.lang;

import sun.misc.FloatingDecimal;
import sun.misc.FpUtils;
import sun.misc.DoubleConsts;

/**
 * The <code>Double</code> class wraps a value of the primitive type
 * <code>double</code> in an object. An object of type
 * <code>Double</code> contains a single field whose type is
 * <code>double</code>.
 * <p>
 * In addition, this class provides several methods for converting a
 * <code>double</code> to a <code>String</code> and a
 * <code>String</code> to a <code>double</code>, as well as other
 * constants and methods useful when dealing with a
 * <code>double</code>.
 *
 * @author  Lee Boynton
 * @author  Arthur van Hoff
 * @author  Joseph D. Darcy
 * @version 1.100, 04/07/06
 * @since JDK1.0
 */
public final class Double extends Number implements Comparable<Double> {
    /**
     * A constant holding the positive infinity of type
     * <code>double</code>. It is equal to the value returned by
     * <code>Double.longBitsToDouble(0x7ff0000000000000L)</code>.
     */
    public static final double POSITIVE_INFINITY = 1.0 / 0.0;

    /**
     * A constant holding the negative infinity of type
     * <code>double</code>. It is equal to the value returned by
     * <code>Double.longBitsToDouble(0xfff0000000000000L)</code>.
     */
    public static final double NEGATIVE_INFINITY = -1.0 / 0.0;

    /** 
     * A constant holding a Not-a-Number (NaN) value of type
     * <code>double</code>. It is equivalent to the value returned by
     * <code>Double.longBitsToDouble(0x7ff8000000000000L)</code>.
     */
    public static final double NaN = 0.0d / 0.0;

    /**
     * A constant holding the largest positive finite value of type
     * <code>double</code>,
     * (2-2<sup>-52</sup>)&middot;2<sup>1023</sup>.  It is equal to
     * the hexadecimal floating-point literal
     * <code>0x1.fffffffffffffP+1023</code> and also equal to
     * <code>Double.longBitsToDouble(0x7fefffffffffffffL)</code>.
     */
    public static final double MAX_VALUE = 0x1.fffffffffffffP+1023; // 1.7976931348623157e+308

    /**
     * A constant holding the smallest positive normal value of type
     * {@code double}, 2<sup>-1022</sup>.  It is equal to the
     * hexadecimal floating-point literal {@code 0x1.0p-1022} and also
     * equal to {@code Double.longBitsToDouble(0x0010000000000000L)}.
     *
     * @since 1.6
     */
    public static final double MIN_NORMAL = 0x1.0p-1022; // 2.2250738585072014E-308
 
    /**
     * A constant holding the smallest positive nonzero value of type
     * <code>double</code>, 2<sup>-1074</sup>. It is equal to the
     * hexadecimal floating-point literal
     * <code>0x0.0000000000001P-1022</code> and also equal to
     * <code>Double.longBitsToDouble(0x1L)</code>.
     */
    public static final double MIN_VALUE = 0x0.0000000000001P-1022; // 4.9e-324

    /**
     * Maximum exponent a finite {@code double} variable may have.
     * It is equal to the value returned by
     * {@code Math.getExponent(Double.MAX_VALUE)}.
     *
     * @since 1.6
     */
    public static final int MAX_EXPONENT = 1023;
 
    /**
     * Minimum exponent a normalized {@code double} variable may
     * have.  It is equal to the value returned by
     * {@code Math.getExponent(Double.MIN_NORMAL)}.
     *
     * @since 1.6
     */
    public static final int MIN_EXPONENT = -1022;

    /**
     * The number of bits used to represent a <tt>double</tt> value.
     *
     * @since 1.5
     */
    public static final int SIZE = 64;

    /**
     * The <code>Class</code> instance representing the primitive type
     * <code>double</code>.
     *
     * @since JDK1.1 
     */
    public static final Class<Double>	TYPE = (Class<Double>) Class.getPrimitiveClass("double");

    /**
     * Returns a string representation of the <code>double</code> 
     * argument. All characters mentioned below are ASCII characters.
     * <ul>
     * <li>If the argument is NaN, the result is the string
     *     &quot;<code>NaN</code>&quot;.
     * <li>Otherwise, the result is a string that represents the sign and 
     * magnitude (absolute value) of the argument. If the sign is negative, 
     * the first character of the result is '<code>-</code>' 
     * (<code>'&#92;u002D'</code>); if the sign is positive, no sign character 
     * appears in the result. As for the magnitude <i>m</i>:
     * <ul>
     * <li>If <i>m</i> is infinity, it is represented by the characters 
     * <code>"Infinity"</code>; thus, positive infinity produces the result 
     * <code>"Infinity"</code> and negative infinity produces the result 
     * <code>"-Infinity"</code>.
     *
     * <li>If <i>m</i> is zero, it is represented by the characters 
     * <code>"0.0"</code>; thus, negative zero produces the result 
     * <code>"-0.0"</code> and positive zero produces the result 
     * <code>"0.0"</code>. 
     *
     * <li>If <i>m</i> is greater than or equal to 10<sup>-3</sup> but less 
     * than 10<sup>7</sup>, then it is represented as the integer part of 
     * <i>m</i>, in decimal form with no leading zeroes, followed by 
     * '<code>.</code>' (<code>'&#92;u002E'</code>), followed by one or 
     * more decimal digits representing the fractional part of <i>m</i>. 
     *
     * <li>If <i>m</i> is less than 10<sup>-3</sup> or greater than or
     * equal to 10<sup>7</sup>, then it is represented in so-called
     * "computerized scientific notation." Let <i>n</i> be the unique
     * integer such that 10<sup><i>n</i></sup> &lt;= <i>m</i> &lt;
     * 10<sup><i>n</i>+1</sup>; then let <i>a</i> be the
     * mathematically exact quotient of <i>m</i> and
     * 10<sup><i>n</i></sup> so that 1 &lt;= <i>a</i> &lt; 10. The
     * magnitude is then represented as the integer part of <i>a</i>,
     * as a single decimal digit, followed by '<code>.</code>'
     * (<code>'&#92;u002E'</code>), followed by decimal digits
     * representing the fractional part of <i>a</i>, followed by the
     * letter '<code>E</code>' (<code>'&#92;u0045'</code>), followed
     * by a representation of <i>n</i> as a decimal integer, as
     * produced by the method {@link Integer#toString(int)}.
     * </ul>
     * </ul>
     * How many digits must be printed for the fractional part of 
     * <i>m</i> or <i>a</i>? There must be at least one digit to represent 
     * the fractional part, and beyond that as many, but only as many, more 
     * digits as are needed to uniquely distinguish the argument value from
     * adjacent values of type <code>double</code>. That is, suppose that 
     * <i>x</i> is the exact mathematical value represented by the decimal 
     * representation produced by this method for a finite nonzero argument 
     * <i>d</i>. Then <i>d</i> must be the <code>double</code> value nearest 
     * to <i>x</i>; or if two <code>double</code> values are equally close 
     * to <i>x</i>, then <i>d</i> must be one of them and the least
     * significant bit of the significand of <i>d</i> must be <code>0</code>.
     * <p>
     * To create localized string representations of a floating-point
     * value, use subclasses of {@link java.text.NumberFormat}.
     *
     * @param   d   the <code>double</code> to be converted.
     * @return a string representation of the argument.
     */
    public static String toString(double d) {
	return new FloatingDecimal(d).toJavaFormatString();
    }

    /**
     * Returns a hexadecimal string representation of the
     * <code>double</code> argument. All characters mentioned below
     * are ASCII characters.
     *
     * <ul>
     * <li>If the argument is NaN, the result is the string
     *     &quot;<code>NaN</code>&quot;.
     * <li>Otherwise, the result is a string that represents the sign
     * and magnitude of the argument. If the sign is negative, the
     * first character of the result is '<code>-</code>'
     * (<code>'&#92;u002D'</code>); if the sign is positive, no sign
     * character appears in the result. As for the magnitude <i>m</i>:
     *
     * <ul> 
     * <li>If <i>m</i> is infinity, it is represented by the string
     * <code>"Infinity"</code>; thus, positive infinity produces the
     * result <code>"Infinity"</code> and negative infinity produces
     * the result <code>"-Infinity"</code>.
     *
     * <li>If <i>m</i> is zero, it is represented by the string
     * <code>"0x0.0p0"</code>; thus, negative zero produces the result
     * <code>"-0x0.0p0"</code> and positive zero produces the result
     * <code>"0x0.0p0"</code>.
     *
     * <li>If <i>m</i> is a <code>double</code> value with a
     * normalized representation, substrings are used to represent the
     * significand and exponent fields.  The significand is
     * represented by the characters <code>&quot;0x1.&quot;</code>
     * followed by a lowercase hexadecimal representation of the rest
     * of the significand as a fraction.  Trailing zeros in the
     * hexadecimal representation are removed unless all the digits
     * are zero, in which case a single zero is used. Next, the
     * exponent is represented by <code>&quot;p&quot;</code> followed
     * by a decimal string of the unbiased exponent as if produced by
     * a call to {@link Integer#toString(int) Integer.toString} on the
     * exponent value.
     *
     * <li>If <i>m</i> is a <code>double</code> value with a subnormal
     * representation, the significand is represented by the
     * characters <code>&quot;0x0.&quot;</code> followed by a
     * hexadecimal representation of the rest of the significand as a
     * fraction.  Trailing zeros in the hexadecimal representation are
     * removed. Next, the exponent is represented by
     * <code>&quot;p-1022&quot;</code>.  Note that there must be at
     * least one nonzero digit in a subnormal significand.
     *
     * </ul>
     * 
     * </ul>
     *
     * <table border>
     * <caption><h3>Examples</h3></caption>
     * <tr><th>Floating-point Value</th><th>Hexadecimal String</th>
     * <tr><td><code>1.0</code></td>	<td><code>0x1.0p0</code></td>
     * <tr><td><code>-1.0</code></td>	<td><code>-0x1.0p0</code></td>
     * <tr><td><code>2.0</code></td>	<td><code>0x1.0p1</code></td>
     * <tr><td><code>3.0</code></td>	<td><code>0x1.8p1</code></td>
     * <tr><td><code>0.5</code></td>	<td><code>0x1.0p-1</code></td>
     * <tr><td><code>0.25</code></td>	<td><code>0x1.0p-2</code></td>
     * <tr><td><code>Double.MAX_VALUE</code></td>
     *     <td><code>0x1.fffffffffffffp1023</code></td>
     * <tr><td><code>Minimum Normal Value</code></td>
     *     <td><code>0x1.0p-1022</code></td>
     * <tr><td><code>Maximum Subnormal Value</code></td>
     *     <td><code>0x0.fffffffffffffp-1022</code></td>
     * <tr><td><code>Double.MIN_VALUE</code></td>
     *     <td><code>0x0.0000000000001p-1022</code></td>
     * </table>
     * @param   d   the <code>double</code> to be converted.
     * @return a hex string representation of the argument.
     * @since 1.5
     * @author Joseph D. Darcy
     */
    public static String toHexString(double d) {
	/*
	 * Modeled after the "a" conversion specifier in C99, section
	 * 7.19.6.1; however, the output of this method is more
	 * tightly specified.
	 */
	if (!FpUtils.isFinite(d) )
	    // For infinity and NaN, use the decimal output.
	    return Double.toString(d);
	else {
	    // Initialized to maximum size of output.
	    StringBuffer answer = new StringBuffer(24); 
 	    
	    if (FpUtils.rawCopySign(1.0, d) == -1.0) // value is negative,
		answer.append("-");		     // so append sign info

	    answer.append("0x"); 

	    d = Math.abs(d);

	    if(d == 0.0) {
		answer.append("0.0p0");
	    }
	    else {
		boolean subnormal = (d < DoubleConsts.MIN_NORMAL);

		// Isolate significand bits and OR in a high-order bit
		// so that the string representation has a known
		// length.
		long signifBits = (Double.doubleToLongBits(d) 
				   & DoubleConsts.SIGNIF_BIT_MASK) |
		    0x1000000000000000L;

		// Subnormal values have a 0 implicit bit; normal
		// values have a 1 implicit bit.
		answer.append(subnormal ? "0." : "1.");

		// Isolate the low-order 13 digits of the hex
		// representation.  If all the digits are zero,
		// replace with a single 0; otherwise, remove all
		// trailing zeros.
		String signif = Long.toHexString(signifBits).substring(3,16);
		answer.append(signif.equals("0000000000000") ? // 13 zeros
			      "0":
			      signif.replaceFirst("0{1,12}$", ""));

		// If the value is subnormal, use the E_min exponent
		// value for double; otherwise, extract and report d's
		// exponent (the representation of a subnormal uses
		// E_min -1).
		answer.append("p" + (subnormal ?
			       DoubleConsts.MIN_EXPONENT:
			       FpUtils.getExponent(d) ));
	    }
	    return answer.toString();
	}
    }
    
    /**
     * Returns a <code>Double</code> object holding the
     * <code>double</code> value represented by the argument string
     * <code>s</code>.
     * 
     * <p>If <code>s</code> is <code>null</code>, then a 
     * <code>NullPointerException</code> is thrown.
     *
     * <p>Leading and trailing whitespace characters in <code>s</code>
     * are ignored.  Whitespace is removed as if by the {@link
     * String#trim} method; that is, both ASCII space and control
     * characters are removed. The rest of <code>s</code> should
     * constitute a <i>FloatValue</i> as described by the lexical
     * syntax rules:
     *
     * <blockquote>
     * <dl>
     * <dt><i>FloatValue:</i>
     * <dd><i>Sign<sub>opt</sub></i> <code>NaN</code>
     * <dd><i>Sign<sub>opt</sub></i> <code>Infinity</code>
     * <dd><i>Sign<sub>opt</sub> FloatingPointLiteral</i>
     * <dd><i>Sign<sub>opt</sub> HexFloatingPointLiteral</i>
     * <dd><i>SignedInteger</i>
     * </dl>
     *
     * <p>
     *
     * <dl>
     * <dt><i>HexFloatingPointLiteral</i>:
     * <dd> <i>HexSignificand BinaryExponent FloatTypeSuffix<sub>opt</sub></i>
     * </dl>
     *
     * <p>
     *
     * <dl>
     * <dt><i>HexSignificand:</i>
     * <dd><i>HexNumeral</i>
     * <dd><i>HexNumeral</i> <code>.</code>
     * <dd><code>0x</code> <i>HexDigits<sub>opt</sub> 
     *     </i><code>.</code><i> HexDigits</i>
     * <dd><code>0X</code><i> HexDigits<sub>opt</sub> 
     *     </i><code>.</code> <i>HexDigits</i>
     * </dl>
     *
     * <p>
     *
     * <dl>
     * <dt><i>BinaryExponent:</i>
     * <dd><i>BinaryExponentIndicator SignedInteger</i>
     * </dl>
     *
     * <p>
     *
     * <dl>
     * <dt><i>BinaryExponentIndicator:</i>
     * <dd><code>p</code>
     * <dd><code>P</code>
     * </dl>
     *
     * </blockquote>
     *
     * where <i>Sign</i>, <i>FloatingPointLiteral</i>,
     * <i>HexNumeral</i>, <i>HexDigits</i>, <i>SignedInteger</i> and
     * <i>FloatTypeSuffix</i> are as defined in the lexical structure
     * sections of the of the <a
     * href="http://java.sun.com/docs/books/jls/html/">Java Language
     * Specification</a>. If <code>s</code> does not have the form of
     * a <i>FloatValue</i>, then a <code>NumberFormatException</code>
     * is thrown. Otherwise, <code>s</code> is regarded as
     * representing an exact decimal value in the usual
     * &quot;computerized scientific notation&quot; or as an exact
     * hexadecimal value; this exact numerical value is then
     * conceptually converted to an &quot;infinitely precise&quot;
     * binary value that is then rounded to type <code>double</code>
     * by the usual round-to-nearest rule of IEEE 754 floating-point
     * arithmetic, which includes preserving the sign of a zero
     * value. Finally, a <code>Double</code> object representing this
     * <code>double</code> value is returned.
     *
     * <p> To interpret localized string representations of a
     * floating-point value, use subclasses of {@link
     * java.text.NumberFormat}.
     *
     * <p>Note that trailing format specifiers, specifiers that
     * determine the type of a floating-point literal
     * (<code>1.0f</code> is a <code>float</code> value;
     * <code>1.0d</code> is a <code>double</code> value), do
     * <em>not</em> influence the results of this method.  In other
     * words, the numerical value of the input string is converted
     * directly to the target floating-point type.  The two-step
     * sequence of conversions, string to <code>float</code> followed
     * by <code>float</code> to <code>double</code>, is <em>not</em>
     * equivalent to converting a string directly to
     * <code>double</code>. For example, the <code>float</code>
     * literal <code>0.1f</code> is equal to the <code>double</code>
     * value <code>0.10000000149011612</code>; the <code>float</code>
     * literal <code>0.1f</code> represents a different numerical
     * value than the <code>double</code> literal
     * <code>0.1</code>. (The numerical value 0.1 cannot be exactly
     * represented in a binary floating-point number.)
     *
     * <p>To avoid calling this method on an invalid string and having
     * a <code>NumberFormatException</code> be thrown, the regular
     * expression below can be used to screen the input string:
     *
     * <code>
     * <pre>
     *	final String Digits	= "(\\p{Digit}+)";
     *  final String HexDigits  = "(\\p{XDigit}+)";
     *	// an exponent is 'e' or 'E' followed by an optionally 
     *	// signed decimal integer.
     *	final String Exp	= "[eE][+-]?"+Digits;
     *	final String fpRegex	=
     *	    ("[\\x00-\\x20]*"+	// Optional leading &quot;whitespace&quot;
     *	     "[+-]?(" +	// Optional sign character
     *	     "NaN|" +		// "NaN" string
     *	     "Infinity|" +	// "Infinity" string
     *
     *	     // A decimal floating-point string representing a finite positive
     *	     // number without a leading sign has at most five basic pieces:
     *	     // Digits . Digits ExponentPart FloatTypeSuffix
     *	     // 
     *	     // Since this method allows integer-only strings as input
     *	     // in addition to strings of floating-point literals, the
     *	     // two sub-patterns below are simplifications of the grammar
     *	     // productions from the Java Language Specification, 2nd 
     *	     // edition, section 3.10.2.
     *
     *	     // Digits ._opt Digits_opt ExponentPart_opt FloatTypeSuffix_opt
     *	     "((("+Digits+"(\\.)?("+Digits+"?)("+Exp+")?)|"+
     *
     *	     // . Digits ExponentPart_opt FloatTypeSuffix_opt
     *	     "(\\.("+Digits+")("+Exp+")?)|"+
     *
     *       // Hexadecimal strings
     *       "((" +
     *        // 0[xX] HexDigits ._opt BinaryExponent FloatTypeSuffix_opt
     *        "(0[xX]" + HexDigits + "(\\.)?)|" +
     *
     *        // 0[xX] HexDigits_opt . HexDigits BinaryExponent FloatTypeSuffix_opt
     *        "(0[xX]" + HexDigits + "?(\\.)" + HexDigits + ")" +
     *
     *        ")[pP][+-]?" + Digits + "))" +
     *	     "[fFdD]?))" +
     *	     "[\\x00-\\x20]*");// Optional trailing &quot;whitespace&quot;
     *	    
     *  if (Pattern.matches(fpRegex, myString))
     *	    Double.valueOf(myString); // Will not throw NumberFormatException
     *	else {
     *	    // Perform suitable alternative action
     *	}
     * </pre>
     * </code>
     *
     * @param      s   the string to be parsed.
     * @return     a <code>Double</code> object holding the value
     *             represented by the <code>String</code> argument.
     * @exception  NumberFormatException  if the string does not contain a
     *               parsable number.
     */
    public static Double valueOf(String s) throws NumberFormatException {
	return new Double(FloatingDecimal.readJavaFormatString(s).doubleValue());
    }

    /**
     * Returns a <tt>Double</tt> instance representing the specified
     * <tt>double</tt> value.
     * If a new <tt>Double</tt> instance is not required, this method
     * should generally be used in preference to the constructor
     * {@link #Double(double)}, as this method is likely to yield
     * significantly better space and time performance by caching
     * frequently requested values.
     *
     * @param  d a double value.
     * @return a <tt>Double</tt> instance representing <tt>d</tt>.
     * @since  1.5
     */
    public static Double valueOf(double d) {
        return new Double(d);
    }

    /**
     * Returns a new <code>double</code> initialized to the value
     * represented by the specified <code>String</code>, as performed
     * by the <code>valueOf</code> method of class
     * <code>Double</code>.
     *
     * @param      s   the string to be parsed.
     * @return the <code>double</code> value represented by the string
     *         argument.
     * @exception NumberFormatException if the string does not contain
     *            a parsable <code>double</code>.
     * @see        java.lang.Double#valueOf(String)
     * @since 1.2
     */
    public static double parseDouble(String s) throws NumberFormatException {
	return FloatingDecimal.readJavaFormatString(s).doubleValue();
    }

    /**
     * Returns <code>true</code> if the specified number is a
     * Not-a-Number (NaN) value, <code>false</code> otherwise.
     *
     * @param   v   the value to be tested.
     * @return  <code>true</code> if the value of the argument is NaN;
     *          <code>false</code> otherwise.
     */
    static public boolean isNaN(double v) {
	return (v != v);
    }

    /**
     * Returns <code>true</code> if the specified number is infinitely
     * large in magnitude, <code>false</code> otherwise.
     *
     * @param   v   the value to be tested.
     * @return  <code>true</code> if the value of the argument is positive
     *          infinity or negative infinity; <code>false</code> otherwise.
     */
    static public boolean isInfinite(double v) {
	return (v == POSITIVE_INFINITY) || (v == NEGATIVE_INFINITY);
    }

    /**
     * The value of the Double.
     *
     * @serial
     */
    private final double value;

    /**
     * Constructs a newly allocated <code>Double</code> object that
     * represents the primitive <code>double</code> argument.
     *
     * @param   value   the value to be represented by the <code>Double</code>.
     */
    public Double(double value) {
	this.value = value;
    }

    /**
     * Constructs a newly allocated <code>Double</code> object that
     * represents the floating-point value of type <code>double</code>
     * represented by the string. The string is converted to a
     * <code>double</code> value as if by the <code>valueOf</code> method.
     *
     * @param      s   a string to be converted to a <code>Double</code>.
     * @exception  NumberFormatException  if the string does not contain a
     *               parsable number.
     * @see        java.lang.Double#valueOf(java.lang.String)
     */
    public Double(String s) throws NumberFormatException {
	// REMIND: this is inefficient
	this(valueOf(s).doubleValue());
    }

    /**
     * Returns <code>true</code> if this <code>Double</code> value is
     * a Not-a-Number (NaN), <code>false</code> otherwise.
     *
     * @return  <code>true</code> if the value represented by this object is
     *          NaN; <code>false</code> otherwise.
     */
    public boolean isNaN() {
	return isNaN(value);
    }

    /**
     * Returns <code>true</code> if this <code>Double</code> value is
     * infinitely large in magnitude, <code>false</code> otherwise.
     *
     * @return  <code>true</code> if the value represented by this object is
     *          positive infinity or negative infinity;
     *          <code>false</code> otherwise.
     */
    public boolean isInfinite() {
	return isInfinite(value);
    }

    /**
     * Returns a string representation of this <code>Double</code> object.
     * The primitive <code>double</code> value represented by this
     * object is converted to a string exactly as if by the method
     * <code>toString</code> of one argument.
     *
     * @return  a <code>String</code> representation of this object.
     * @see java.lang.Double#toString(double)
     */
    public String toString() {
	return String.valueOf(value);
    }

    /**
     * Returns the value of this <code>Double</code> as a <code>byte</code> (by
     * casting to a <code>byte</code>).
     *
     * @return  the <code>double</code> value represented by this object
     *          converted to type <code>byte</code>
     * @since JDK1.1 
     */
    public byte byteValue() {
	return (byte)value;
    }

    /**
     * Returns the value of this <code>Double</code> as a
     * <code>short</code> (by casting to a <code>short</code>).
     *
     * @return  the <code>double</code> value represented by this object
     *          converted to type <code>short</code>
     * @since JDK1.1 
     */
    public short shortValue() {
	return (short)value;
    }

    /**
     * Returns the value of this <code>Double</code> as an
     * <code>int</code> (by casting to type <code>int</code>).
     *
     * @return  the <code>double</code> value represented by this object
     *          converted to type <code>int</code>
     */
    public int intValue() {
	return (int)value;
    }

    /**
     * Returns the value of this <code>Double</code> as a
     * <code>long</code> (by casting to type <code>long</code>).
     *
     * @return  the <code>double</code> value represented by this object
     *          converted to type <code>long</code>
     */
    public long longValue() {
	return (long)value;
    }

    /**
     * Returns the <code>float</code> value of this
     * <code>Double</code> object.
     *
     * @return  the <code>double</code> value represented by this object
     *          converted to type <code>float</code>
     * @since JDK1.0 
     */
    public float floatValue() {
	return (float)value;
    }

    /**
     * Returns the <code>double</code> value of this
     * <code>Double</code> object.
     *
     * @return the <code>double</code> value represented by this object
     */
    public double doubleValue() {
	return (double)value;
    }

    /**
     * Returns a hash code for this <code>Double</code> object. The
     * result is the exclusive OR of the two halves of the
     * <code>long</code> integer bit representation, exactly as
     * produced by the method {@link #doubleToLongBits(double)}, of
     * the primitive <code>double</code> value represented by this
     * <code>Double</code> object. That is, the hash code is the value
     * of the expression:
     * <blockquote><pre>
     * (int)(v^(v&gt;&gt;&gt;32))
     * </pre></blockquote>
     * where <code>v</code> is defined by: 
     * <blockquote><pre>
     * long v = Double.doubleToLongBits(this.doubleValue());
     * </pre></blockquote>
     *
     * @return  a <code>hash code</code> value for this object.
     */
    public int hashCode() {
	long bits = doubleToLongBits(value);
	return (int)(bits ^ (bits >>> 32));
    }

    /**
     * Compares this object against the specified object.  The result
     * is <code>true</code> if and only if the argument is not
     * <code>null</code> and is a <code>Double</code> object that
     * represents a <code>double</code> that has the same value as the
     * <code>double</code> represented by this object. For this
     * purpose, two <code>double</code> values are considered to be
     * the same if and only if the method {@link
     * #doubleToLongBits(double)} returns the identical
     * <code>long</code> value when applied to each.
     * <p>
     * Note that in most cases, for two instances of class
     * <code>Double</code>, <code>d1</code> and <code>d2</code>, the
     * value of <code>d1.equals(d2)</code> is <code>true</code> if and
     * only if
     * <blockquote><pre>
     *   d1.doubleValue()&nbsp;== d2.doubleValue()
     * </pre></blockquote>
     * <p>
     * also has the value <code>true</code>. However, there are two
     * exceptions:
     * <ul>
     * <li>If <code>d1</code> and <code>d2</code> both represent
     *     <code>Double.NaN</code>, then the <code>equals</code> method
     *     returns <code>true</code>, even though
     *     <code>Double.NaN==Double.NaN</code> has the value
     *     <code>false</code>.
     * <li>If <code>d1</code> represents <code>+0.0</code> while
     *     <code>d2</code> represents <code>-0.0</code>, or vice versa,
     *     the <code>equal</code> test has the value <code>false</code>,
     *     even though <code>+0.0==-0.0</code> has the value <code>true</code>.
     * </ul>
     * This definition allows hash tables to operate properly.
     * @param   obj   the object to compare with.
     * @return  <code>true</code> if the objects are the same;
     *          <code>false</code> otherwise.
     * @see java.lang.Double#doubleToLongBits(double)
     */
    public boolean equals(Object obj) {
	return (obj instanceof Double)
	       && (doubleToLongBits(((Double)obj).value) ==
		      doubleToLongBits(value));
    }

    /**
     * Returns a representation of the specified floating-point value
     * according to the IEEE 754 floating-point "double
     * format" bit layout.
     * <p>
     * Bit 63 (the bit that is selected by the mask 
     * <code>0x8000000000000000L</code>) represents the sign of the 
     * floating-point number. Bits 
     * 62-52 (the bits that are selected by the mask 
     * <code>0x7ff0000000000000L</code>) represent the exponent. Bits 51-0 
     * (the bits that are selected by the mask 
     * <code>0x000fffffffffffffL</code>) represent the significand 
     * (sometimes called the mantissa) of the floating-point number. 
     * <p>
     * If the argument is positive infinity, the result is
     * <code>0x7ff0000000000000L</code>.
     * <p>
     * If the argument is negative infinity, the result is
     * <code>0xfff0000000000000L</code>.
     * <p>
     * If the argument is NaN, the result is 
     * <code>0x7ff8000000000000L</code>. 
     * <p>
     * In all cases, the result is a <code>long</code> integer that, when 
     * given to the {@link #longBitsToDouble(long)} method, will produce a 
     * floating-point value the same as the argument to 
     * <code>doubleToLongBits</code> (except all NaN values are
     * collapsed to a single &quot;canonical&quot; NaN value).
     *
     * @param   value   a <code>double</code> precision floating-point number.
     * @return the bits that represent the floating-point number.  
     */
    public static long doubleToLongBits(double value) {
	long result = doubleToRawLongBits(value);
	// Check for NaN based on values of bit fields, maximum
	// exponent and nonzero significand.
	if ( ((result & DoubleConsts.EXP_BIT_MASK) == 
	      DoubleConsts.EXP_BIT_MASK) &&
	     (result & DoubleConsts.SIGNIF_BIT_MASK) != 0L)
	    result = 0x7ff8000000000000L;
	return result;
    }

    /**
     * Returns a representation of the specified floating-point value
     * according to the IEEE 754 floating-point "double
     * format" bit layout, preserving Not-a-Number (NaN) values.
     * <p>
     * Bit 63 (the bit that is selected by the mask 
     * <code>0x8000000000000000L</code>) represents the sign of the 
     * floating-point number. Bits 
     * 62-52 (the bits that are selected by the mask 
     * <code>0x7ff0000000000000L</code>) represent the exponent. Bits 51-0 
     * (the bits that are selected by the mask 
     * <code>0x000fffffffffffffL</code>) represent the significand 
     * (sometimes called the mantissa) of the floating-point number. 
     * <p>
     * If the argument is positive infinity, the result is
     * <code>0x7ff0000000000000L</code>.
     * <p>
     * If the argument is negative infinity, the result is
     * <code>0xfff0000000000000L</code>.
     * <p>
     * If the argument is NaN, the result is the <code>long</code>
     * integer representing the actual NaN value.  Unlike the
     * <code>doubleToLongBits</code> method,
     * <code>doubleToRawLongBits</code> does not collapse all the bit
     * patterns encoding a NaN to a single &quot;canonical&quot; NaN
     * value.
     * <p>
     * In all cases, the result is a <code>long</code> integer that,
     * when given to the {@link #longBitsToDouble(long)} method, will
     * produce a floating-point value the same as the argument to
     * <code>doubleToRawLongBits</code>.
     *
     * @param   value   a <code>double</code> precision floating-point number.
     * @return the bits that represent the floating-point number.
     * @since 1.3
     */
    public static native long doubleToRawLongBits(double value);

    /**
     * Returns the <code>double</code> value corresponding to a given
     * bit representation.
     * The argument is considered to be a representation of a
     * floating-point value according to the IEEE 754 floating-point
     * "double format" bit layout.
     * <p>
     * If the argument is <code>0x7ff0000000000000L</code>, the result 
     * is positive infinity. 
     * <p>
     * If the argument is <code>0xfff0000000000000L</code>, the result 
     * is negative infinity. 
     * <p>
     * If the argument is any value in the range
     * <code>0x7ff0000000000001L</code> through
     * <code>0x7fffffffffffffffL</code> or in the range
     * <code>0xfff0000000000001L</code> through
     * <code>0xffffffffffffffffL</code>, the result is a NaN.  No IEEE
     * 754 floating-point operation provided by Java can distinguish
     * between two NaN values of the same type with different bit
     * patterns.  Distinct values of NaN are only distinguishable by
     * use of the <code>Double.doubleToRawLongBits</code> method.
     * <p>
     * In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three 
     * values that can be computed from the argument: 
     * <blockquote><pre>
     * int s = ((bits &gt;&gt; 63) == 0) ? 1 : -1;
     * int e = (int)((bits &gt;&gt; 52) & 0x7ffL);
     * long m = (e == 0) ?
     *                 (bits & 0xfffffffffffffL) &lt;&lt; 1 :
     *                 (bits & 0xfffffffffffffL) | 0x10000000000000L;
     * </pre></blockquote>
     * Then the floating-point result equals the value of the mathematical 
     * expression <i>s</i>&middot;<i>m</i>&middot;2<sup><i>e</i>-1075</sup>.
     *<p>
     * Note that this method may not be able to return a
     * <code>double</code> NaN with exactly same bit pattern as the
     * <code>long</code> argument.  IEEE 754 distinguishes between two
     * kinds of NaNs, quiet NaNs and <i>signaling NaNs</i>.  The
     * differences between the two kinds of NaN are generally not
     * visible in Java.  Arithmetic operations on signaling NaNs turn
     * them into quiet NaNs with a different, but often similar, bit
     * pattern.  However, on some processors merely copying a
     * signaling NaN also performs that conversion.  In particular,
     * copying a signaling NaN to return it to the calling method
     * may perform this conversion.  So <code>longBitsToDouble</code>
     * may not be able to return a <code>double</code> with a
     * signaling NaN bit pattern.  Consequently, for some
     * <code>long</code> values,
     * <code>doubleToRawLongBits(longBitsToDouble(start))</code> may
     * <i>not</i> equal <code>start</code>.  Moreover, which
     * particular bit patterns represent signaling NaNs is platform
     * dependent; although all NaN bit patterns, quiet or signaling,
     * must be in the NaN range identified above.
     *
     * @param   bits   any <code>long</code> integer.
     * @return  the <code>double</code> floating-point value with the same
     *          bit pattern.
     */
    public static native double longBitsToDouble(long bits);

    /**
     * Compares two <code>Double</code> objects numerically.  There
     * are two ways in which comparisons performed by this method
     * differ from those performed by the Java language numerical
     * comparison operators (<code>&lt;, &lt;=, ==, &gt;= &gt;</code>)
     * when applied to primitive <code>double</code> values:
     * <ul><li>
     *		<code>Double.NaN</code> is considered by this method
     *		to be equal to itself and greater than all other
     *		<code>double</code> values (including
     *		<code>Double.POSITIVE_INFINITY</code>).
     * <li>
     *		<code>0.0d</code> is considered by this method to be greater
     *		than <code>-0.0d</code>.
     * </ul>
     * This ensures that the <i>natural ordering</i> of
     * <tt>Double</tt> objects imposed by this method is <i>consistent
     * with equals</i>.
     *
     * @param   anotherDouble   the <code>Double</code> to be compared.
     * @return  the value <code>0</code> if <code>anotherDouble</code> is
     *		numerically equal to this <code>Double</code>; a value
     *		less than <code>0</code> if this <code>Double</code>
     *		is numerically less than <code>anotherDouble</code>;
     *		and a value greater than <code>0</code> if this
     *		<code>Double</code> is numerically greater than
     *		<code>anotherDouble</code>.
     *		
     * @since   1.2
     */
    public int compareTo(Double anotherDouble) {
        return Double.compare(value, anotherDouble.value);
    }

    /**
     * Compares the two specified <code>double</code> values. The sign
     * of the integer value returned is the same as that of the
     * integer that would be returned by the call:
     * <pre>
     *    new Double(d1).compareTo(new Double(d2))
     * </pre>
     *
     * @param   d1        the first <code>double</code> to compare
     * @param   d2        the second <code>double</code> to compare
     * @return  the value <code>0</code> if <code>d1</code> is
     *		numerically equal to <code>d2</code>; a value less than
     *          <code>0</code> if <code>d1</code> is numerically less than
     *		<code>d2</code>; and a value greater than <code>0</code>
     *		if <code>d1</code> is numerically greater than
     *		<code>d2</code>.
     * @since 1.4
     */
    public static int compare(double d1, double d2) {
        if (d1 < d2)
            return -1;		 // Neither val is NaN, thisVal is smaller
        if (d1 > d2)
            return 1;		 // Neither val is NaN, thisVal is larger

        long thisBits = Double.doubleToLongBits(d1);
        long anotherBits = Double.doubleToLongBits(d2);

        return (thisBits == anotherBits ?  0 : // Values are equal
                (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN)
                 1));                          // (0.0, -0.0) or (NaN, !NaN)
    }

    /** use serialVersionUID from JDK 1.0.2 for interoperability */
    private static final long serialVersionUID = -9172774392245257468L;
}

Generated By: JavaOnTracks Doclet 0.1.4     ©Thibaut Colar